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SUMMARY

Forced convective diffusion-reaction is considered for viscous axisymmetric extensional
convecting velocity in the neighborhood of a sphere. For Peclet numbers in the range 0.1 < Pe < 500
and for Damkohler numbers increasing with increasing Pe but in the overall range 0.02 < Da < 10,
average and local Sherwood numbers have been computed. By introducing the eigenfunction expansion
c(1,0) = Y c (P, (cosD) into the forced convective diffusion equation for the concentration of a
chemical species undergoing a first order homogeneous reaction and by using properties of the
Legendre functions P, (cos0), the variable coefficient PDE can be reduced to a system of N+1 second
order ODEs for the radial functions c, (r), n=0,1,2,...,N. The adaptive grid algorithm of Pereyra and
Lentini can be used to solve the corresponding 2(N+1) first order differential equations as a two-point
boundary value problem on 1 < r < r_. Convergence of the expansion for a specific value of N can
thus be established and provides “spectral” behavior as well as the full concentration field c(r,0).

INTRODUCTION

The prevalence of small often spherical or approximately spherical particles, bubbles, or
droplets in atmospheric physics, chemical reaction engineering, combustion science, and environmental
technology implies the small Reynolds number (Re << 1) assumed here. For concreteness a solid
sphere is also assumed. Unlike the axisymmetric uniform streaming motion past a sphere (Stokes,
1851) that is a reasonable assumption in the neighborhood of sedimenting particles or those in
fluidized beds, however, the flow field in neighborhood of most particles in other natural, industrial,
and laboratory circumstances is neither uniform nor can it be assumed to be the so-called slip velocity
characteristic of the ensemble average over all the particles in complex, even turbulent two phase flow
such as occurs in stirred tanks, for instance.

We are interested in considering other physically realistic - and therefore necessarily more
complicated - flow fields that would have another domain application. The ubiquitous spherical
geometry and the mathematical simplicity of axisymmetry make the axisymmetric extensional flows
(Re << 1) a natural candidate. The occurence of extensional flows, in particular of locally



axisymmmetric ones in the neighborhood of small spherical particles, bubbles, or drops, one of the
basic building blocks in the rheology and flow of a wide variety of dispersions.

There are two axisymmetric extensional flow fields. The biaxial and uniaxial flows both have
the same streamlines. However, the biaxial flow comes along the axes from z = + and approaches the
poles of the sphere symmetrically, departing radially outwardly in the symmetry (x,y)-plane, whereas
the uniaxial flow is oppositely directed and approaches radially symmetrically in the equatorial plane
and departs along the +z axes. Far from the sphere, the dimensionless Cartesian components of the
velocity are (U ,,U,,0,) = #(x ,y ,-22), with t referring throughout to biaxial and uniaxial,
respectively.

For Re=0, all flow fields are at rest, and the Sherwood number is independent of the Peclet
number arid depends solely on the Damkohler number, i.e., Sh=Sh (Dap). For Re << 1 but not
identically zero, Sh=Sh (Pe,Day). Pe no more characterizes convection than Re characterizes the
velocity field. Different velocity fields convect heat and mass differently, even if they have the same
small non-zero Re and the same Pe. For Re=0, Sh=1+vDay, but for Re << 1, although the
axiSymmetric uniform streaming flow and the axisymmetric extensional flows all three have the same
asymptote for Sh (viz., 14+vDay) as Pe ~ 0, for Pe << 1 but Pe = 0, the functional dependance upon
Pe, Da, will be different for the uniform flow, for the biaxial flow, and for the uniaxial flow,
Sh=Sh(Pe,Day) will be different, even though Pe and Day are identical. What is more, the local mass
transfer coefficients Sh(0;Pe,Da,) will be even more different. For a uniform streaming flow at
infinity, Pfeffer and his co-workers have studied homogeneous first order reactions for low Reynolds
number convective diffusion (Rutland and Pfeffer, 1967), (Chen and Pfeffer, 1970) :

We compare and contrast the results for convective diffusion-reaction for biaxial and uniaxial
flows with one another and with those for the uniform streaming flow. Our emphasis, however, is on
the theoretical approach, the mathematical calculations, and the use of the Pereyra-Lentini adaptive
grid algorithm, above all on certain constraints and computational limitations that arise.

THEORETICAL APPROACH

Rather than directly attacking the forced convective diffusion/diffusion-reaction equation
numerically as a variable coefficient partial differential equation in which the extensional velocity field
introduces the known but complicated set of variable coefficients, we take another tack. We introduce
the eigenfunction expansion

c(r,0) =Y, c,(r) Pycos8) (1)

with the P,(cosf) being Legendre functions and the radial functions c,(r) are unknown. By utilizing
properties of the P,(1), u=cosB, we then reduce the single partial differential equation for c(r0) toa
system of N+1 ordinary differential equations for the c,(r) and solve them numerically, as outlined in

the next section.
The dimensionless forced convective diffusion-reaction equation investigated may be written

PeUC-Vc=Vi- Dac, (2)

in which the second Damkohler number may be expressed in terms of the first,



Day = Da, Pe 3)

and the Peclet number Pe for the extensional flow utilizes the chmcteﬁsﬁc velocity E a , in which E
is the rate of strain at infinity and a is the radius of the solid sphere:

Pe=Ea’/@,Da,-k/E,Da,,=ka’/@. 4

The low Reynolds number axisymmetric extensional flow has two non-vanishing
dimensionless velocity components

U, =% r-2r2e 34 ) (1-3cos%),
2 2

Uo=t(r-r“)(l—3sinocos0).

®)

The + signs refer to the biaxial/uniaxial flows, respectively. The streamlines for the two are identical
and are shown in Figure 1, with the flow being oppositely directed along the streamlines. The biaxial
flow comes from infinity toward the poles and exits radially symmetrically in the equatorial plane. The
axisymmetric extensional creeping flow was obtained by specialization of the solution to the creeping
flow equation of Batchelor (1970) for a general linear rate of strain at infinity; see also Leal (1992) for
the final result.

The partial differential equation to be solved,

dc + 00(1',0) -a_c

Pe (U,(r,l)) = r ao) =V - Pe Da, ¢ ©

may be rewritten upon introducing the expansion (1) as

g{t F(r) ‘2";0(1—3u2)P,,(u)+G(r)c,(r)(3u)(npn(u) ‘”Pn-n(u))]
™
i %%(’2 ‘fiia) n(le) ca(r) - Day c,,(r)} =0
in which,
F(r) =(r-3r%+ 304, .
G(r) = (1-r).



In order to reduce this to a system of ordinary differential equations by utilizing the
orthogonality of the P (1), we must first reduce all the 6-dependent coefficients to Legendre
polynomials. To accomplish this we use both algebraic and differential recurrence relations for them
(Abramowitz and Stegun, 1965) , the former repeatedly as required. Ultimately, the convection terms

may be written as
d‘ 2”'1

()2, n* | , _ n? )
(223 " 2a-1y | 2 (2ay G(D a0 ) Pali)

dc, (n+1) (n+2)
nG(r)c”(r)}{(2n+l)(2n+3) n¢2(u)
1

(2n+1) +G(r) cn( r) n-2( P)}

Y=

n=0

®

. n(n-1)
(2n-1)

The remaining terms of the equation need not be rewritten. Upon utilizing the orthogonality of the
P,(u) and solving for the second derivatives, we obtain for the general n (n = 0,1),

d, 3 (k+1)2,  n? )
£ -2~ o ((2n+3) (2a-1)

d*c,

> =% Pe

dr

3_aln-l) (F() '2-(n2)0(r)c-2(r>)

(2n-1)(2n-3) (10)

(2+1) (5+2) @y, .
(22+3) (22+5) (F(’) ar (”3)0(’)cn+z(’))

g n+l)

c,(r)+ Da, c,(r)

_2 de,
r dr

In the computations and results, it is more informative to vary Pe and Da; (called K in the program

and figures).
The boundary conditions on c(r,0) are
,0) =
e(r,9) (11)
c(r »,0) =0,
which imply
co(r=1) =1,
c(r=1) =0, n 21, (12)

c,(r -0 =0, n 20.



NUMERICAL ALGORITHM

The algorithm of Pereyra and Lentini (1978) as codified now in the IMSL subroutine
DBVPFD was used. It is a robust program for solving two-point boundary value problems. In order to
solve the ordinary differential equation system represented by (10)-(12), we first must terminate the
infinite series (1) at N < o, and the spatial domain at r_ < « . The former leads to a finite system of
second order equations for which c,(r) = 0 for n < 0, n > N. The latter leads to the modified boundary
conditions

co(r=1) =1
c,(r=1) =0, n=20 13)
c(r=r) =0, n20.

The results for c, (r;Pe,Da;) will obviously depend upon N and r., . The latter (r.) is a parameter that
can be varied in the program. The former (N) must be selected before the program can be run, but
once selected (as conservatively as possible), convergence of the series can be established. The other
crucial computational parameters in the subroutine are the initial and maximum number of mesh points
(NINIT, MXGRID).

Finally, the system of N+1 second order equations must be converted in the usual way to
a system of 2(N+1) first order equations in order to employ the IMSL subroutine:

co(r) —=yi(x)
(1) —=y,(x)

en-1 (1) —yxmows_ | (2)
cy(r) —’ﬂ_'eg_'s( X)

dc _ dy, .
T(I) & x) }’!Lmzﬂ-ﬂl(x)

de dy, -
& (D =7 J NeQns o ( X) (14)

dcn . dJ’n*l
D T &

(x) —»y nEQNS, .\ (X)

dy@»_/s_ )
dr dx (

ch(l') _ dy&s
dr T dx

M(f)

X) = Y nEons- 1 (X)

(x) —’yNEoNS( x)



RESULTS AND DISCUSSION

For a practicing engineer and for many engineering and other scientists and mathematicians,
the principal goal of such an investigation would be a relation between the average Sherwood number
(the dimensionless mass transfer coefficient) Sh and the physicochemical parameters, viz., Sh(Pe;Da)).
Of some practical interest is also the local Sherwood number, which for an axisymmetric convecting
velocity would be expressible as Sh(0;Pe,Da,), the integral of which, when carried out over the surface
of the sphere, yields the average Sherwood number Sh. The magnitude of the local Sherwood number
is the normal derivative of the concentration field c(r,0) at the sphere surface, 8 ¢/d r (1,0)},., .
Although the concentration field c(r,0) in other approaches to the forced convective diffusion-reaction
problem would be the object of the numerical research, it generally receives short schrift as being of
little practical interest. In multiparticle systems, the extent of the concentration fields non-negligible
level for a single particle can for instance, be useful in assessing, or at least estimating, the minimum
interparticle distance at which concentration fields of neighboring particles would affect one another.

We start our discussion, neither with Sh(0;Pe,Da;) nor with c(0;Pe,Da;), but with the object of
our numerical study, the radial functions c,(r;Pe,Day), denoted as c,(r;Pe,K). In Figure 2a,b for r_ (=R
in the notation employed throughout the paper) = 10 and Pe=5, K=1 we show the radial functions
c,(r), for n=0,1,2,...,70 for a biaxial flow. Consistent with the reflection symmetry across the equatorial
(6=m/2) plane, only the even radial modes are nonvanishing. The radial functions decrease in
magnitude, and N=70 clearly produces a convergent series.

Biaxial

When the radial functions are multiplied respectively by their corresponding Legendre
polynomials, the isocontour plot shown in the upper half of Figure 1 results. The biaxial velocity field
produces the thin(ner) stagnation concentration boundary layer at the poles. The concentration wake
then imbeds the equatorial plane symmetrically. There are, to emphasize the point, neither momentum
boundary layers nor momentum wakes (Re << 1). At the same Pe, r.., and N, an increase of K from 1
to 2 reduces (Figure 3) the boundary layer a bit and the wake more, effects that are still more
pronounced for K=5 (Pe=5) in Figure 4. For K=10 (Pe=5), all of the isocontours (0.1-0.9 in increments
of 0.1) except for c=0.01 are spherically symmetric (Figure5), as far as is apparent to the naked eye
(and undoubtedly a boon to theoreticians).

For an increase of Pe to 50, the K=2 (Figure 6) is of course dissimilar to that for Pe=5, but for
K=5,10 similar remarks apply to the Pe=50 isocontours: there is one nonspherical isocontour for K=5
and none at K=10 (Plots not shown).

For a further increase to Pe=200 (Figure 7) the isocontours show a 2-d salient at K=1, which
has become almost spherically symmetric at K=2 (Figure 8). For K=5 and 10 (Plots not shown)
spherical symmetry reigns, the differences being solely the decreasing radii of the circles with
increasing K.

The isocontour plot for Pe=500 and K=0.5 (Figure 9) is similar to that for Pe=200 and K=1
(Figure 7).

Uniaxial

The area of stagnation concentration boundary layer for uniaxial extensional creeping flow is
centered on the stagnation velocity ring, the equator. The concentration wakes are two, stretching from
the poles (6=0,n), qualitatively similar to the concentration wake on the downwind pole of a sphere in
a uniform streaming flow at infinity. Such observations are rendered more faithfully in Figure 10 for
Pe=5, K=5 than in words.



An increase from K=5 to 10 for the same Peclet number (Pe=5) brings about expected
isocontours (Figure 11), as does an increase of Pe to 50 for K=5 (Figure 12) and for K=10 (Figure
13), by which values spherical isocontours result.

Local Sherwood Numbers

For fast reactions (Da;=K=5,10), spherical isocontours were observed. An increase in the
convection (i.e., in Pe) served to feed the reaction faster but did not further influence the spherical
symmetry of the isocontours, once a Pe was reached at which they were spherical. This is nowhere
more evident than for the biaxial flow in Figures 14a,b for K=5 and 10 respectively; Pe=5, 50, 200,
500. There are slight local maxima at 6=0,7 and a slight local minimum at 8=7/2. Increases in Pe
lead to dramatic increases in the level of mass transfer rates without however appreciably affecting
local values over the surface, relative to one another. The increase in Da; from 5 to 10 increases the
level of order 10 % for each Pe shown.

Absent reaction, biaxial convective diffusion produces a local Sherwood number that is peaked
at 6=0,n and troughed around 0=n/2. The clear minimum is reduced rapidly as the maxima increase
with K (Figure 15a, Pe=5; Figure 15b, Pe=50; Figure 15c, Pe=200; Figure 15d, Pe=500).

For a uniaxial flow the convective diffusion problem without reaction produces a pronounced
maximum at 6=n/2 and minima at 6=0,n, as expected (Figure 16a). Also as expected, the strong
maximum is reduced relative to the minima with increasingly fast reaction (Figure 16a), an effect
observed with higher Pe (Figure 16b,c).

Crossplots for K=5 and 10 for the several values of Pe in Figures 17a,b, emphasizing the weak
0-dependence of Sh(0) for fast reactions.

Average Sherwood Number

Different velocity fields convect heat and mass differently, as is evident even for the two types
of axisymmetric extensional flows. Concentration isocontours, other than those for very high Da, , are
different for biaxial and uniaxial flows.

For Pe=5, convective diffusion (K=0 in Tables 1,2) by uniaxial flow manifests a greater
average mass transfer coefficient than by biaxial flow. Indeed, strictly speaking, for any value of Pe
and K, Sh(Pe;, K) ,; > Sh(Pe;, K)) y; , as is evident from Tables 1 and 2.

Nonetheless, for Pe=5, K=1, Shy, is greater than Shy; by only 0.07; for K=2, by only 0.03; for
K=5, by only 0.005. For Pe=50 and K=5, 10, Sh,; > Shy; only in the third decimal place, which also
holds for the same K's , at Pe=200. For K=10, at Pe=500, they differ only in the fourth decimal place.
Thus, from this limited set of results, Sh is virtually identical for uniaxial and biaxial flows for K=5,10
for Pe 250. For smaller reaction rates and for smaller convection (smaller Pe), small but perceptible
differences will arise between biaxial and uniaxial creeping flows, with the latter being the larger of
the two.
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FIGURE 1

CONCENTRATION ISOCONTOURS
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FIGURE 3
CONCENTRATION ISOCONTOURS
BIAXIAL FLOW WITH HOMOGENEOUS REACTION

PE=5.00 K=2.00 R=10.0 ORDER=1 L=70

et JSRTIS USSR S WU SUN VA YIS UV UUS W TS M ST SURANNG NS G A S U S U A B SRR AT S S

N
m~
BN
[&)]

[$4]

1
N
Co—

FIGURE 4
CONCENTRATION ISOCONTOURS
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FIGURE §
CONCENTRATION ISOCONTOURS

BIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 6
CONCENTRATION ISOCONTOURS
BIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 7
CONCENTRATION ISOCONTOURS

BIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 8
CONCENTRATION ISOCONTOURS
BIAXIAL FLOW WITH HOMOGENEOQUS REACTION
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FIGURE 9
CONCENTRATION ISOCONTOURS
BIAXIAL FLOW WITH HOMOGENEOQUS REACTION
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FIGURE 10
CONCENTRATION ISOCONTOURS
UNIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 11
CONCENTRATION ISOCONTOURS

UNIAXIAL FLOW WITH HOMOGENEOQUS REACTION
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FIGURE 12
CONCENTRATION ISOCONTOURS
UNIAXIAL FLOW WITH HOMOGENEOQOUS REACTION
PE=50.00 K=5.00 R=5.0 ORDER=1 L=70
5 | . L | R S S S S S U I | T ST
4] N
2 -
] [ |
= N |
1 X p
Cﬂ. T 1 T ) - |
-5 -4 -3 3 4 5 |




UNIAXIAL FLOW WITH HOMOGENEOUS REACTION

FIGURE 13

CONCENTRATION ISOCONTOURS
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FIGURE 14a

BIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 14b

BIAXIAL FLOW WITH HOMOGENEOUS REACTION
K=10; PE=5, 50, 200, 500
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BIAXIAL FLOW WITH HOMOGENEOUS REACTION
PE=5; K=0, 5, 10
9

\'
Il

<

LOCAL SHERWOOD NUMBER
a o

'
/
)

<

1 T 1 T T 1t i

0 20 40 60 80 100 120 140 160 18
THETA

18



LOCAL SHERWOOD NUMBER
H
o

FIGURE 15b
BIAXIAL FLOW WITH HOMOGENEOUS REACTION
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FIGURE 15d

BIAXIAL FLOW WITH HOMOGENEOUS REACTION
PE=500; K= 5, 10
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UNIAXIAL FLOW: HOMOGENEOQUS REACTION
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FIGURE 17a

UNIAXIAL FLOW: HOMOGENEOUS REACTION
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UNIAXIAL FLOW: HOMOGENEOUS REACTION
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TABLE 1: Average Sherwood Numbers for Biaxial Flow

Pe | K [ R |Avg. Sherwood N | NI [INM|NF [NE | N | TOL
5 0110 2.4222332546 60 | 600 | 166 | 142 | 70 | 1E-06
5 1110 3.4844020321 60 {600 | 135142 | 70 | 1E-06
5 2|10 4.2826214867 60 16001351142 | 70 | 1E-06
5 51|10 6.0326632737 60 | 600 | 104 | 142 | 70 | 1E-06
S 1010 8.0806645862 60 | 600|101 | 142 | 70 | 1E-06
50| 515 16.8417150406 100 | 875 [ 140 | 142 | 70 | 1E-06
50 j10] 5 23.3676877824 100 §{ 875 | 130 | 142 ] 70 | 1E-06
20001 5} S 32.6445658252 100 1 875 {219 ] 142 | 70 | 1E-06
20010 S 45.7258627584 100 | 875 | 235 | 142 | 70 | 1E-06
001 5| S 51.0160617125 100 | 875 | 425 | 142 | 70 | 1E-06
500110} S 71.7138264523 100 | 875 §202 ] 142 | 70 | 1E-06
TABLE 2: Average Sherwood Numbers for Uniaxial Flow
Pe | K [ R |Avg. Sherwood N | NI [INM|NF |[NE| N | TOL
5 010 2.6345022231 60 | 600 | 141|142 70 | 1E-06
5 1110 3.5533852471 60 1600|178 | 142 | 70 | 1E-06
5 2 {10 4.3116939874 60 | 600 | 189 | 142 | 70 | 1E-06
5 5110 6.0374513084 60 | 600 | 154 | 142 | 70 | 1E-06
S |{10f10 8.0814290608 60 | 600|141 | 142 | 70 | 1E-06
S0 1S} S 16.8450206823 100 { 875 [ 309 | 142 | 70 | 1E-06
S0 |10]S 233680425224 | 100 | 875 | 243 | 142 | 70 | 1E-06
2001 5| S 32.6462378512 100 | 875 | 527 | 142 | 70 | 1E-06
200110 S 45.7260072732 100 | 875 | 353 | 142 | 70 | 1E-06
500110} § 71.7138969816 100 { 875 {417 | 142 | 70 | 1E-06

325734

Number of initial grid points, including the endpoints (NINTT)

Maximum number of grid points allowed (MXGRID)

Number of final grid points, including the endpoints (NFINAL)
Number of (first order) differential equations (NEQNS)

Number of terms in the eigenfunction expansion
Relative error control parameter
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COMPUTATION OF THREE-DIMENSIONAL MIXED CONVECTIVE ‘ /7[ Lj/é /
BOUNDARY LAYER FLOW %0

_*5:) - .3
Prashant Gadepalli and Muhammad M. Rahman = 7
Department of Mechanical Engineering ’i’ SR
University of South Florida
Tampa, Florida F ./ 2
ABSTRACT

The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal)
mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced
convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent
to the plate. The rates of heat and mass transfer are determined by a combined influence of the two
transport processes. The equations for the conservation of mass, momentum, energy, and species
concentration were solved along with appropriate boundary conditions to determine the distributions of
velocity components, temperature, and concentration across the thickness of the boundary layer at
different locations on the plate. Results were expressed in dimensionless form using Reynolds number,
Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt
number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical
locations and at larger distances away from the forced convection leading edge. Effects of forced
convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross-
stream forced convection enhanced the rate of heat and mass transfer by a very significant amount.

INTRODUCTION

Heat and mass transfer under the combined influence of a vertical buoyant force and an externally-
imposed horizontal flow occurs frequently in nature and has several technological applications as well.
Some examples of such cross-flow mixed convection are: the cooling of electronic circuit boards by fans,
heat transfer from vertical walls in buildings, heat loss mechanisms from solar collectors, mass transfer
during a drying process, and wind-driven propagation of fire.

There have been a number of past studies devoted to the understanding of mixed convective heat
and mass transfer. These include aiding, opposing, and cross flow situations. Lin et al. (ref.1) have
studied the mixed convection problem of an isothermal horizontal plate moving in parallel or reversely
to a free stream. They concluded that the heat transfer rate increases significantly with increase in
buoyancy, and increase in the velocities of the plate and the free stream. Khouaja et al. (ref.2) studied
mixed convection in slender vertical cylinders for power law variation in surface heat flux. They found
that the local heat transfer rate increases with increasing Prandtl number, increasing curvature, and
increasing value of power law exponent. A vertical flat plate was simulated as a limiting form of the
cylinder and provided satisfactory results. Wickern (ref.3) studied mixed convection from an arbitrarily
inclined semi-infinite flat plate for different inclination angles and for different Prandtl numbers. He found
that for opposing buoyancy forces, singular as well as regular behavior can occur.

In a cross-flow situation, the transport is more complicated because of the three-dimensional nature
of the boundary layer flow. In an early study, Young and Yang (ref.4) used a perturbation analysis and
found that a weak cross-flow has very little effect on natural convection over a vertical flat surface.
Eichorn and Hasan (ref.5) as well as Plumb (ref.6) have obtained similarity solutions for Falkner-Skan
type three-dimensional mixed convection. But similarity exists only for certain power law surface
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temperature distributions. Evans and Plumb (refs. 7, 8) extended the box scheme developed by Keller and
Cebeci (ref.9) to three dimensions and obtained numerical solutions for mixed convection from an
isothermal surface in a cross-flow. Rahman and Carey (refs. 10,11) examined the transient behavior of
the flow that may precede the final steady state configuration. They looked at heat transfer from a vertical
plate in a number of transient conditions. They found that under certain conditions, the local velocity and
temperature fields overshoot before reaching the final steady-state configuration.

The present study explored the process of combined heat and mass transfer during cross-flow
mixed convection. The three-dimensional cross-flow boundary layer flow was analyzed when buoyancy-
driven flow and transport in the vertical direction was the same order of magnitude as the forced
convection in the horizontal direction. Equations governing the conservation of mass, momentum, energy,
and species concentration were solved numerically to predict velocity, temperature, and concentration
distribution across the boundary layer and the variation of heat and mass transfer rate over the plate. A
parametric study was performed to determine the effects of Reynolds, Richardson (Ri and Ri"), Prandtl,

and Schmidt numbers.

MATHEMATICAL MODEL

The schematic of the problem under consideration is shown in Figure 1. A vertical flat plate of
finite length and height is placed in an extensive horizontal fluid stream. The surface of the plate is
maintained at a constant temperature T, and the concentration of the diffusing medium at the surface
remains constant at C,. The ambient fluid is at a constant temperature T.. and has the diffusing species
with a constant concentration C_. It is assumed that T>T. and C>C.. The velocity of the fluid in
the free stream far away from the plate remains constant at w... A three-dimensional boundary layer flow
develops adjacent to the plate due to the combined effects of the horizontal forced flow and buoyancy
force due to temperature and concentration differences acting in the vertical direction. The characteristics
of the mixed convective flow are determined by the relative magnitudes of the forced and buoyancy-driven
flows. :

The equations describing the conservation of mass, momentum, energy, and concentration inside
the boundary layer for steady, incompressible, laminar flow, with constant fluid properties (Boussinesq
approximation for buoyancy) are given by:

v+ 22 =0 (1)

ou. . du, odu_, du _ .
u§{+v-3}+w—a—z-—vé—}-ﬁ+gﬁ(2" T.) +gf* (C-C.) (2)

u_a_!‘_’+vﬂ'+waw=v otw (3)

ox oy 0z Ox?

u_al‘-PVaT-{-W.g.:z: azT (4)

Sa____

ox 5-}; 0z ox?
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aC ac,. . oc 62
i Yo% Va_y Waz 9x2 (5)

The boundary conditions are given by:

x=0:v=0,w=0,T=7T, C=¢( (6)
XxX-®o:v=0,w=w, T=T, C=C, (7)
y=0:v=0,w=w, T=T, C=C0C, (8)

z=0:v=0,w=w, T=T, C=20C, , (9)

It is convenient to define the following non-dimensional variables at this point.

T- T, c-cC
0 = - = ="
To—:r',,"" C, - C.
v=4, v=X, w=2X
W, w, W,
x=2, v=2X, z=2
L L L

Using the above non-dimensionalized variables, the governing equations (1-5) can be expressed as:

U, av, ow_
= or ez © (10)

g9V, eV, ov. 1 &#v

0X 0Y 0Z Re gx2 *RIORI%Y (1)

an VaW ow_ 1 &Fw

ox Yoy "oz Re axz (12)
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UQQ+VQ+W69— i 00 (13)

oX 9Y 0Z Re.Pr gx2

U%%+vi‘|{+wi‘|{=_1_ﬂ (14)

dY 0Z Re.Sc gx?

And, the boundary conditions (6-10) are transformed to :

X=0:VvV=0, W=0, 6=1, ¢ =1 (15)
X-®: V=0, W=1, 6=0, § =0 (16)
y=0:VvV=0, W=1, 6=0, ¢ =0 (17)
zZ=0:Vv=0, W=1, =0, ¢ =0 (18)

The governing equations (10-14) contain the Reynolds number, Re, Prandtl number, Pr, Schmidt
number, Sc, Richardson number, Ri, and Richardson number for mass transfer Ri* as parameters. The
relative magnitude of these parameters determines the characteristics of the flow. The effects of each of
these parameters on the flow configuration has been studied during the course of the present investigation.
The parameters were varied over the following range. Re = 10°, 10%, and 10°; Pr = 0.7 and 7
(corresponding to air and water respectively ); Sc = 0.6 and 580 (nominally for water vapor-air system
and sodium chloride - water system ); Ri = 1, 10, and 100; and Ri*=1, 10 and 100.

COMPUTATIONAL PROCEDURE

The governing transport equations, along with the boundary conditions described in the previous
section were solved numerically using the PHOENICS computer program. A Cartesian grid structure
covering the entire boundary layer region was used for the computation. The distribution of cells in the
computation domain was determined from a series of test runs with different number of cells in the x, y,
and z directions. It was found that 60x20x20 cells are adequate for the present computation. The finite
volume equations were derived by using the principles of conservation of mass, momentum, energy, and
species concentration at each cell. The variables were stored in a staggered fashion where they made more
physical sense for cell conservation. For each cell, the velocity components were stored at downstream
boundaries, whereas all pressures and temperatures were stored at the cell center. The hybrid difference
scheme demonstrated by Patankar (ref.12) was used to preserve the relative contribution of convection and
diffusion to a cell from its neighbor in terms of cell Peclet number. The discretized equations were solved
by using the SIMPLEST algorithm (ref.13). The convergence of the numerical solution was monitored
by spot checking of field values during the course of the computation and by calculating and monitoring
the sum of residuals for each equation. Iterations were continued until sum of residuals for each
computational cell dropped below 107. All equations had to be solved simultaneously because of the
coupling of velocity, temperature, and concentration through the buoyancy terms.
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RESULTS AND DISCUSSION

The numerical solution procedure described in the last section was used to compute the velocity
components, and temperature and concentration distributions for different. combinations of Reynolds
number, Richardson number (Ri and Ri"), Prandtl number, and Schmidt number. These results were used
to predict Nusselt and Sherwood numbers which quantified the rates of heat and mass transfer. Figure
2 shows the variation of the vertical component of velocity across the thickness of the boundary layer for
a combination of Re = 10%, Ri = 1, Ri’ = 0, and Pr = 0.7. Physically, it corresponds to pure heat transfer
from an isothermal vertical plate to air. The plot shows the velocity profile at four different locations on
the plate. Of these four locations chosen, two were near the leading edge and the other two farther
downstream (looking at both natural convection and forced flow directions). These were chosen to observe
the increasing influence of the boundary layer growth. Itis observed that, at all four locations, the vertical
component of velocity has a bell shaped structure typical for natural convection with zero velocity at the
wall as well as at the edge of the boundary layer. For any given value of Z (horizontal location), the
magnitude of V increases with increasing Y (vertical location). This is because of the growth of buoyancy-
induced boundary layer in the vertical direction of the plate. The effects of buoyancy becomes stronger
with increase in vertical height. For any given Y, there is a very significant increase of buoyant flow with
increase in the horizontal coordinate. The forced convection boundary layer develops in the horizontal
direction. The effects of forced flow remains strong near the near edge of this boundary layer. As the
fluid particles move downstream, their horizontal component of velocity decreases because of the viscous
resistance from the wall. With increase in horizontal location, the effects of forced convection become
weaker, and buoyancy becomes the more dominant transport mechanism.

Figure 3 shows the variation of horizontal component of velocity across the boundary layer. As
expected, the horizontal component of velocity increases monotonically from zero to the free stream value
with increase in X at locations on the plate. It may be noticed that at smaller values of Z, there is no
significant change of W-velocity profile with vertical distance. This is because buoyancy is relatively
weaker in that region. Further downstream in the horizontal direction, the magnitude of W-velocity
decreases with Y because of a significant increase in buoyancy induced flow. The continuity has to be
preserved at all locations of the flow. Therefore, a steeper variation of one velocity component results in
a corresponding variation in the other velocity component. The distribution of temperature across the
thickness of the boundary layer is demonstrated in Figure 4 for the same combination of parameters used
in figures 2 and 3. Analogous to a two-dimensional boundary layer flow (for either natural or forced
convection), the temperature decreases monotonically with X at all locations on the plate. The slope of
the temperature curve at the wall is proportional to the rate of heat transfer from the wall. It may be
noticed that heat transfer is larger near both forced and natural convection leading edges and increases as
the boundary layer increases in thickness. Comparing with figure 3, it can be noticed that the thickness
of the thermal boundary layer is somewhat larger because of the Prandtl number smaller than 1.

The effects of Reynolds and Prandtl number on the flow and heat transfer are demonstrated in
figures 5 and 6. Figure 5 shows the variation of the vertical component of velocity across the boundary
layer for a given plate location, for a number of combinations of Reynolds and Prandtl number. The
corresponding plots for temperature distribution are shown in figure 6. It can be noticed that with increase
in Reynolds number, the thickness of both velocity and thermal boundary layer decrease. The decrease
in boundary layer thickness causes a slight increase for the peak of the vertical velocity even though the
Richardson number is preserved constant. With increase in Reynolds number, the slope of the temperature
curve at the wall also increases. This indicates a larger rate of heat transfer. The increase of heat transfer
with fluid velocity is obviously expected. With increase of Prandtl number, both vertical component of
velocity and boundary layer thickness decrease. The temperature curve becomes steeper showing an
increase of heat transfer rate with Prandtl number.
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The effects of the variation of Richardson number (Ri) is explored in figures 7 and 8. Richardson
number indicates the ratio of buoyant force and the inertia due to forced convection. The usual definition
of Richardson number is modified in the present study with the plate aspect ratio to account for different
lengths and heights of the plate. For a given Reynolds number and aspect ratio, a higher Richardson
number (Ri) implies a higher Grashof number (Gry), which in turn means a stronger natural convection
component and smaller boundary layer thickness. This can be clearly seen in figure 7 where the vertical
component of velocity is plotted for a number of combinations of Reynolds and Prandtl number.
Comparing the peak values of V, it can be realized that a ten time increase in Ri results in more than 3
times increase in vertical velocity. Results for both Prandtl numbers confirm the same trend, but a larger
Prandtl number results in a smaller boundary layer thickness and a smaller vertical velocity. In figure 8,
it can be noticed that the temperature curve becomes steeper and the rate of heat transfer at the wall
increases with increase in both Reynolds and Prandtl numbers.

The distribution of Nusselt number over the plate is demonstrated in figure 9, where the variation
of Nusselt number with the horizontal coordinate is plotted for two different vertical locations. Results for
both fluid systems (Pr=0.7 and 7) are shown in the figure. The Nusselt number is calculated here with the
vertical height as the length scale. The plot therefore essentially demonstrates the variation of the actual
heat transfer coefficient. In a cross-flow situation, both vertical and horizontal distances are useful length
scales and can be used in the calculation of dimensionless parameters. The Nusselt number is maximum
near the vertical leading edge, drops down very rapidly as one proceeds along Z and finally reaches a
stable value at large values of Z. The magnitude of Nu for any given Reynolds number and vertical
location is significantly higher for an higher Prandtl number. This is because of the smaller boundary
layer thickness and steeper temperature profile at the wall. The effects of Reynolds number (strength of
the forced flow) on Nusselt number is shown in figure 10. It can be noticed that the increase of Nusselt
number with Reynolds number is very significant at all locations on the plate. Therefore, a reasonable
cross-flow may very significantly alter the fluid flow and heat transfer scenario in an otherwise natural
convection situation. Comparing with the magnitude of Nusselt number for pure natural convection flow,
it was noticed that an order of magnitude increase in heat transfer was noticed at smaller Z-locations. The
enhancement factor became smaller at larger values of horizontal coordinate.

Mass transfer from a vertical plate in the presence of a horizontal cross-flow was studied for two
specific fluid systems. These are: the evaporation of water from a porous vertical wall which involves
the diffusion of water vapor to ambient air; and the dissolution of sodium chloride into water. The Schmidt
number for these diffusion processes under normal atmospheric pressure and temperature are 0.6 and 580,
respectively. To illuminate the mass transfer process, the vertical wall containing the diffusing medium
is assumed to be at the same temperature as the free stream. In addition Soret and Dufor effects are
neglected. Therefore, Richardson number for heat transfer (Ri) is zero during these mass transfer
processes. The buoyant force is created due to concentration difference and the corresponding Richardson
number is labeled as Ri".

The variation of the vertical fluid velocity and the concentration of water vapor into air are shown
in figures 11 and 12 for different locations of the plate. It is not surprising that the V distribution looks
very similar to that in figure 2 and concentration distribution looks similar to that of temperature
distribution presented in figure 3. This is because, in either case though the cause of the buoyancy force
is different, the resulting effect is almost the same. Also, we are considering the case of Ri*=1, which
means that the buoyancy forces are about the same order of magnitude of the forced flow. Hence, even
though the physics of the problem is totally different for heat transfer and for mass transfer,
mathematically they are very similar. For locations near the vertical leading edge (smaller Z), forced
convective flow predominates and there is not much change in the V or T profiles with Y. But as one
proceeds further downstream, the natural convective effects begin to show up and the magnitude of the
peak value of V increases. From figure 12, it can be seen that the concentration gradient is higher at
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locations nearer the leading edge, thus implying that the rate of mass transfer is higher here.

The effects of Reynolds number on the vertical velocity and concentration profiles for a particular
location in the plate is shown in figures 13 and 14. A larger Reynolds number decreases the boundary
layer thickness and increases the slope of the concentration curve. Therefore, the rate of mass transfer
increases. The effect of Schmidt number is very significant. It significantly enhances the rate of mass
transfer. The vertical velocity for the dissolution of NaCl into water is much smaller in magnitude
compared to the vertical velocity attained during diffusion of water vapor into air. The vertical velocity,
V increases greatly with increase in Ri* (figure 15). This is due to the fact that for any given values of
Reynolds number and any aspect ratio of the plate, Ri* is directly proportional to Gr," , which controls
the buoyancy force. Increase in Ri* causes reduction of the thermal boundary layer thickness and results
in steeper concentration profiles, suggesting a high diffusion rate of the species. Comparing the two fluid
systems, the rate of mass transfer is larger for Nacl-H,O system owing to much steeper concentration
profile at the wall.

The Sherwood number (Sh) variation along the Z direction is plotted in figure 17 for different Y-
locations for a fixed Re and Ri*. Results for both flow systems has been shown in this plot. Analogous
to heat transfer, the mass transfer rate is largest near the leading edge for forced convection, diminishes
monotonically with Z, and approaches a constant value at locations far away from the leading edge. The
Sherwood number is higher for higher values of Y and increases significantly with Sc, thus stressing the
importance of fluid properties in determining the mass transfer coefficient. The variation of Sh along the
Z-direction for different values of Re, for Sc=0.6 and Sc=580 is shown in figure 18. It can be seen that
increase in Reynolds number increases Sh significantly. This effect is more pronounced at locations near
the forced convective leading edge. Therefore, the presence of a cross-flow may very significantly
enhance the rate of mass transfer in practical diffusion processes.

CONCLUSIONS

The objective of the present analysis was to identify the relative importance of the free and forced
mode of transport at different locations over a vertical flat plate in cross-flow and also to determine the
influence of the different dimensionless parameters on the flow structure and on the rate of heat and mass
transfer. It was found that forced convection dominates at locations near the vertical leading edge and
natural convection attains importance at locations further downstream. The heat as well as mass transfer
coefficients are higher at the leading edge owing to smaller thermal boundary layer thickness and steeper
gradients of temperature and concentration. With increase in Reynolds number and/or Prandtl number,
the boundary layer thickness became smaller and both heat and mass transfer coefficient increased. A
larger Richardson number (Ri or Ri’) resulted in larger buoyancy-induced transport. The combined effects
of natural and forced convection resulted in much larger overall rate of heat and mass transfer.

NOMENCLATURE
A Aspect ratio, ratio of the length of the plate to its height ( L/H )
C Mass concentration
D Mass diffusivity
g Acceleration due to gravity
G Mass transfer coefficient
Gry Grashof number for heat transfer, gpH’ (T, - T./V*
Gr'y Grashof number for mass transfer, gB’H® (C, - C_/v’
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Heat transfer coefficient

Height of the plate ( in the y-direction )

Thermal conductivity

Length of the plate ( in the z-direction )

Nusselt number, hy/k

Prandtl number

Reynolds number, w_L/v

Richardson number for heat transfer, Gry, A’ Re’
Richardson number for mass transfer, Gr,,’ AY Re?
Schmidt number

Sherwood number, Gy/@D

Temperature

Velocity component in the x-direction

Dimensionless velocity component in the x-direction, w/w.,
Velocity component in the y-direction

Dimensionless velocity component in the y-direction, v/w.,
Velocity component in the z-direction

Dimensionless velocity component in the z-direction, w/w,_
Normal coordinate

Dimensionless normal coordinate, x/L

Vertical coordinate

Dimensionless vertical coordinate, y/L

Horizontal coordinate

Dimensionless horizontal coordinate, /L

Greek Symbols

Thermal diffusivity

Coefficient of thermal expansion

Volume expansion coefficient for concentration
Kinematic viscosity

Dimensionless temperature, (T- T.) / (T, - T..)
Dimensionless concentration, (C - C.) / (C, - C.)

Density
Subscripts
Plate-fluid interface
Free-stream condition
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S. Rajagopalan and M.M. Rahman ) ) - = ?‘
Department of Mechanical Engineering
University of South Florida %
Tampa, Florida /,447 /6
SUMMARY

The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film
adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet
at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction
between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process
was modeled by establishing equations for the conservation of mass, momentum, and species concentration
and solving them analytically. A scaling analysis was used to determine dominant transport processes.
Appropriate boundary conditions were used to solve these equations to develop expressions for the local
concentration of gas across the thickness of the film and distributions of film height, bulk concentration,
and Sherwood number along the radius of the disk. The partial differential equation for species
concentration was solved using the separation of variables technique along with the Duhamel’s theorem
and the final analytical solution was expressed using confluent hypergeometric functions. Tables for
eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study
was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters.

At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman
number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be
small when compared to the case of no reaction (pure absorption), but the enhancement factor was very
significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes
considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions
of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results
were compared to previous theoretical results for limiting conditions, and were found to have very good
agreement.

INTRODUCTION

Mass transfer with chemical reactions into thin films has been the subject of many theoretical and
experimental investigations. Understanding the process of gas absorption into thin films and its effect on
the chemical kinetics of the associated reactions is very important in chemical process industries.
Absorption of oxygen into thin films is important in medical engineering. Wetted wall columns are being
extensively used in mass transfer studies. The present study presents a detailed theoretical analysis of gas
absorption to a thin liquid film adjacent to a horizontal rotating disk. This kind of absorption process
is useful in a microgravity environment where usual falling film columns cannot be established and the
rate of transport can be enhanced by the introduction of fluid acceleration by an alternative approach such
as rotation. In addition to its fundamental scientific contribution and possible application in space based
chemical processes, the results of this research will be useful for the design of a spacecraft thermal
management system using absorption heat pump.
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In the past, there has been a number of studies on mass transfer to a falling liquid film. Olbrich
and Wild [ref. 1] studied the diffusion from the free surface into a liquid film in laminar flow over a
sphere, a cone and a cycloid of revolution. They used the Laplace transform technique to solve the
governing differential equations followed by the application of the residue theorem. Gas absorption with
zero-order reaction for a liquid moving in a plug flow was studied by Astarita and Marrucci [ref. 2] Riazi
and Faghri [ref. 3] analyzed the gas absorption in a laminar falling film with zero-order reactions. The
differential equations were solved by the method of separation of variables, and the subsequent solution
was given using an infinite series of hypergeometric functions. They also presented the enhancement
factor when compared to the absorption rates in a stagnant liquid film found from a simple penetration
model. A simplified form of the enhancement factor was derived for specific conditions.

The overall reaction rate in a gas-liquid reaction is controlled by the physical mass transfer rate
and/or by the chemical reaction rate. Two models are generally used to describe the transfer mechanism,
viz., the film model and the penetration model. The film model postulates a stagnant film at the surface
of the liquid next to the gas . While the rest of the liquid is kept uniform in composition, the gas diffuses
into the film by molecular diffusion alone. The penetration theory assumes that after some time the
interface is renewed by fresh liquid and fresh gas. The elements of gas and liquid leaving the interface
are more or less saturated with the absorbed component. Of the two theories, the film model is the
simplest and is applied most frequently. Landau [ref. 4] studied the simultaneous interphase mass transfer
and a zero-order reaction using the film model. He gave analytical solutions for three regimes of the
absorption process, viz., low rates of absorption when the reaction goes to completion in the film, higher
rates of absorption when it goes to completion in the bulk and, at still higher rates of absorption when it
does not go to completion. Van de Vusse [ref. 5] derived expressions for the overall reaction rate for mass
transfer with chemical reactions. He used both the film theory and the penetration theory. He showed that
at high transfer rates the overall reaction rate approaches the chemical reaction rate. The effect of chemical
reaction on the bulk-phase concentration was studied by Nagy and Ujhidy [ref. 6]. They gave a
mathematical model to calculate the bulk-phase concentrations in the entire finite reaction rate regime in
case of both irreversible and reversible reactions. Analyses of mass transfer in hemodialysers for laminar
blood flow and homogeneous dialysate was done by Cooney, Kim and Davis [ref. 7). The solutions were
obtained in terms of confluent hypergeometric functions. They also discussed the application of their
mathematical model to systems used in clinical practice.

Mass transfer to a thin film adjacent to a rotating disk surface was studied by Rahman and Faghri
[ref. 8]. They gave analytical and numerical solutions to the problem. The analytical solution was obtained
using the method of separation of variables and hypergeometric functions. Sherwood numbers and buik
concentration were calculated for different values of Reynolds and Ekman numbers and then the results
were compared with that of the numerical finite difference solution. They found that significant
enhancement of absorption rate can be obtained when the angular velocity of the rotating disk is
increased. Their problem involved pure absorption with no chemical reaction.

Several experimental investigations have also been done to study effect of chemical reactions on
mass transfer into a thin liquid film. Jhaveri and Sharma [ref. 9] studied the absorption of oxygen in
aqueous alkaline solution of sodium diothionite. The reaction was found to be first order with respect to
diothionite concentration below 0.08 g mol/l. and second order with respect to diothionite concentration
above 0.08 g mol/l. The reaction was found to be zero order with respect to oxygen for all other
diothionite concentrations. Roberts and Danckwerts [ref. 10] studied the kinetics of carbon dioxide
absorption in alkaline solutions. They devised a method to eliminate the "stagnant film" end effect on
wetted-wall columns. The catalytic effect of arsenite ions on the reaction between carbon dioxide and
water was measured. Autocatalytic oxidation of Cyclohexane was investigated by Suresh et al [ref. 11].
The behavior of the reaction was found to be complex arising from the fact that the reaction was
autocatalytic and the reaction was zero order in oxygen over the entire absorption range. Astarita [ref. 12]
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studied the absorption of carbon dioxide into hydroxide solutions and in carbonate- bicarbonate buffer
solutions. The absorption rates were measured for a packed tower column. The kinetics of the absorption
of Carbon dioxide in monoethanolamine solutions at short contact times was studied by Clarke [ref. 13].
The rates of absorption of carbon dioxide at contact times of 3 and 20 ms and at gas pressures of 1 and
0.1 atm. was measured. He observed that the heat of reaction influences the rate of absorption. The effect
of interfacial turbulence during the absorption of carbon dioxide into monoethanolamine was studied by
Brian et al [ref. 14]. They discussed the discrepancies between the theoretical considerations and the
available experimental data. They stated that this could be due to the interfacial turbulence driven by
surface tension gradients. They found that the use of actual physical mass transfer coefficient during the
reaction improves the agreement between the penetration theory model and experimental data. Hjortkjaer
and Jension [ref. 15] investigated the kinetics of the Rhodium complex catalyzed carbonylation of
methanol. The reaction was investigated at carbon mono-oxide pressures between 1 and 50 atm and in the
temperature range of 150 - 225 °C. The reaction was discerned to be zero-order with respect to the
reactants, and first order with respect to the catalyst and promoter. The activation energy was found to be
14.7 kcal/gmol. :

Although a significant number of research has been done on mass transfer into thin liquid films
with simultaneous chemical reactions, especially with respect to falling liquid films, very few work has
been done on mass transfer into thin liquid films adjacent to a rotating disk. The present study gives a
detailed theoretical analysis of gas absorption into a thin liquid film over a rotating disk in the presence
of a zero-order chemical reaction. A theoretical model is developed and the effects of Reynolds number,
Ekman number and dimensionless reaction rate are studied.

MATHEMATICAL MODEL

The flow of a thin film adjacent to a horizontal rotating disk is considered in the present study.
The system is schematically shown in Figure 1. The film is formed by the impingement of a controlled
liquid jet at the center of the disk. The disk rotates about its axis with a constant angular velocity @. The
liquid film enters the gas medium at a radial location r=r,,. A coordinate system attached to the free
surface (Figure 1) is used for the analysis. The following assumptions are made to simplify the problem.

(1) v<<uorwand 9d/dy >> d/dr. These assumptions are valid since the thickness of the film
is much smaller than the radius of the disk.

(2) For a very thin liquid layer there is no significant hydrostatic pressure variation. The pressure
everywhere in the film is equal to the ambient pressure.

(3) The gravitational body force is negligible when compared to the centrifugal force even for
a moderate rate of rotation.

(4) w << u and u=0r. These assumptions are valid only at a large rate of rotation, and become
more appropriate at a larger radii.

Under these assumptions, the average velocity at any radial location can be calculated in a closed

form and is given by

2,82
w=9 rd (1)
3v

The conservation of mass at any radial location gives
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Q=2nrWs 2

From equation (1) and (2), the film thickness can be expressed as

2xw3r?

6=( 3VQ )lﬂ | (3)

The above assumptions simplify the differential equation describing the conservation of gas

concentration in the liquid stream. In the presence of a simultaneous zero-order chemical reaction
occurring in the liquid phase, this equation is described by

v X.p%C 4 @

The appropriate boundary conditions to equation (4) are

r=r,; Cc=0 (5)
z=0: c=C* (6)
aC
=0 —_—
z % ¢))

Equation (4) can be written in a dimensionless form as follows

where

and

(1-%)%%%-‘: )
X=BW[g%-1) (€)
1 .-

(192)‘/3”';"35“%3‘ : (10)



Corresponding boundary conditions are given by

X=0 and 0<Y<l: y=0 . (11
Y=0 and X>0. =1 (12)

. oy
Y=Y x>0 === 13
and X>0 g 0 (13)

where

Y'=1 when a<2

14
=\J—% when 22 {14)

In equation (14), a<2 corresponds to the case when the maximum depth of penetration is equal to the film

thickness.
022 corresponds to the case when the maximum depth of penetration is less then the film

thickness. In that situation, the boundary condition given by equation(13) should be changed to

Y=Y' and X>0: and 2¥- (15)
aY

Now o can also be written as,

a=—L (16)
vX+B
where
p=,/B an
Hence, the equation (8) becomes
-y Fe__p (18)
ox aY2 ‘/X+B

The present system [Equations (18), (11-15)] has non-homogeneity in the differential equation
which is a function of the variable X, and in the boundary condition which is a constant. The principle
of separation of variables can be used to solve the corresponding problem with the non-homogenity in the
differential equation being independent of the variable X. Then Duhamel’s theorem [ref. 16] can be

applied to obtain the actual solution.
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Introducing the parameter T in equation (18), the auxiliary problem can be taken as

1-yHS0. .50 __p_ 19
A-Y=— o B .. (19)

and the associated boundary conditions being

Y=0 and X>0: =1 (20)
X=0 and O<Ysl: =0 (21)
and, if a2
Y=Y and x>0: Z¥-0
3 (22)
or, if =2
Y=Y" and x>0: 2¥-0 and 23
= A y=0 (23)

Equation (19) along with the boundary conditions (20-23) was solved using the method of
separation of variables, thus obtaining the solution to the auxiliary problem as

oX,Y,1)=—P—¥2- Ly ¥*+1-Y" C A PYexp(-12
2\/t+B yt+B g e ™ (24)

x exp(-A Y 2)M (H"

S, 2
"—’A Y
4 277 ]

The eigen values, A, are given as roots of the following equation.

(1-AY )M (l;i,%,,.y.z),,y.z ).(33—1) u ( 7;1, g’”,z) 5

The constant, C, can be determined by using the orthogonal property of the eigen functions, and given
as
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1

]{~ Py L _yy'-1|1-rIN (HdY
2y/t+B  t+B

C,=2

n ] (26)
Ja-vNimay
0
where, N (y) are the eigen functions given by
1”2 2o | 374 3, 2 @7
N, (Y)=1,"Yexp(-A,Y*/2)M y ,E,A"Y

and M(a,b,c) is the confluent hypergeometric functions with arguments a,b and c [ref. 17].

The solution to the present auxiliary problem is similar to that obtained by Riazi and Faghri [ref.
3] for gas absorption in a falling liquid film in the presence of a zero order chemical reaction.

The Duhamel’s theorem relates the solution of the auxiliary problem to the original problem and
is given by

=90 X ax-
YLD=— [ 6(X-¥,0)ds (28)
After performing the integration, we get the concentration profile as

YOLD=2 Y -aY " +1-3 A, A Yexp(-4, Y /2)exp(-1. 1)
n=1 (29)

x M 3-1",2,). Y?
4 27"

where
1
f(- Y%aYY‘—l)(l—Y’)Nn(Y)dY
A =2 1 (30)
Ja-raNinay
0

n|R

The first fifteen values of A,, and A, are listed in Table 1. The eigen values A, were determined
from equation (25) by using the bisection method and the corresponding integration constants, A, were
obtained from equation (30). The numerical integration was performed using Simpson’ rule. Up to 32
digits were retained for all mathematical calculations though we list only eight digits after the decimal in
table 1. This was required to overcome truncation errors during the computation of confluent
hypergeometric functions which are periodic in nature.
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The Sherwood number for gas absorption can be written as

2 o
.. @31

l-fowdy

Sh*=—

After substituting for y from equation (29) into equation (31), the Sherwood number can
be written as

aY*+Y " A,exp(-AZN)A,"
= a1 (32)

£l X Aexp(- x,m"’fexp( -2 Y’/z)YM(?’ i gl)
n=1

In order to get a better understanding of the change of absorption rate with the flow rate and the
rate of rotation, Sherwood number without the film thickness, Sh was also calculated.The Sherwood
number, Sh can be related to Sh™ by the relation

2 \1B
Sh=Sh* | ——| Rey’ E," §% (33)
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The influence of the chemical reaction can be evaluated by comparing the rate of gas absorption,
G to the rate of gas absorption, G.° of an infinitely deep stagnant liquid with the same physical
properties and with no chemical reaction. The ratio, G/G.° is known as the enhancement factor [ref. 3).
The the Enhancement Factor when compared to the case of physical absorption, E_ can be written as

Y'aX +E -e ’l:x)
E, - R . (34)
Ax
b1

The influence in the chemical reaction can also be evaluated by comparing the absorption rate,
G with the absorption rate, G,, of the same flow system but in which the chemical reaction is absent. Thus
the Enhancement Factor when compared to the case of no chemical reaction but the same flow system,
E, is given by



] A _ 2
YaX+Y —E(1-e
n=1 Y4

E,- L h (35)

RESULTS AND DISCUSSION

The mathematical model developed in the previous section was used to calculate the mass transfer
rates and enhancement factors for some specific flow rates and rates of rotation. The flow system that was
considered in the present investigation is shown in figure 1. The fluid enters the gas medium at a radial
location r=r,, and is dispersed along the radial direction. The gas is absorbed and reacts with the fluid in
zero-order simultaneously and the absorbed gas is transported downstream with the flow. It is assumed
that the mass of the gas absorbed is negligible compared to the mass of the liquid. The flow remains
laminar throughout the physical domain considered in the present investigation. The important
dimensionless parameters are: the radial location X, the normal coordinate Y, the concentration ‘¥, the
Reynolds number Re, the Ekman number E and the reaction parameter o.

The thickness of the liquid film is given by equation (3). As can be seen from the equation, the
thickness decreases monotonically with the radius. The thickness depends on the fluid flow rate and the
rotational speed. At larger radii, the flow is driven by the centrifugal force. The effects of inertial force
are significant only at smaller radii. The present study did not consider the development region near the
center of the disk. For a small Ekman number (large rate of rotation), the flow is primarily driven by
centrifugal force even at small radial locations. The film height can greatly influence the rate of
absorption. Under a very fast reaction, a low diffusion rate, or when the thickness of the film is large,
the penetration depth remains smaller than the film thickness(o>2) at the entire flow domain. Under a
slow reaction, a very thin film, or a high diffusion rate, the penetration depth becomes equal to the film
thickness (a<2) after the film has travelled some distance downstream.

The analytical solutions for dimensionless concentration and Sherwood number (dimensionless
mass transfer rate) are given by equation (29) and equation (32), respectively.These equations represent
the solution as a series of confluent hypergeometric functions, and are valid for any given reaction rate.
The solution for the first fifteen sets of eigenvalues (A,) and the coefficients (C,) are presented in Table
1 for different values of o. The eigen values were obtained as roots of equation (25). The bisection
method was used to calculate the eigenvalues. Simpson’s rule was used to perform the numerical
integration with 5000 intervals. In all numerical computations, 32 digits were retained after the decimal
to accurately calculate the values of hypergeometric functions. The values in Table 1 were compared with
those presented by Riazi and Faghri [ref. 3] for gas absorption to a falling film with zero order chemical
reaction and Olbrich and Wild [ref. 1] and Rahman and Faghri [ref. 10] for the case of a=0 (absorption
with no chemical reaction). The present results differed slightly from those of Riazi and Faghri {ref. 3).
The difference becomes larger at higher eigen values. It was found that the discrepancy is due to
truncation errors in the calculations of Riazi and Faghri [ref. 3] who used double precision arithmetic for
their calculations. The results in this paper appears to be more accurate as up to 32 significant digits were
used for the calculations and the eigen values and the integration coefficients agree exactly with that of
Olbrich and Wild[ref. 1] and Rahman and Faghri[ref. 10} for the limiting case of a=0. The eigen values
calculated from the equation (25) are independent of & when a<2 but it depends on o when 022 (since
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Y =V(2/0) when o=2). It may be noted that for any given flow rate and speed of rotation, the
dimensionless reaction parameter ¢, varies with the radial location as it is dependent on the local film
thickness.

The concentration profile at different radial locations for a=0.1 and a=2 are shown in figures 2
and 3 respectively. In both these graphs, it can be seen that the concentration increases in the
downstream direction at all locations across the thickness of the film. As the liquid film moves
downstream, the gas diffuses in and reacts with the film. At values of o less then or equal to 2, the gas
can penetrate the entire film thickness. When o is larger then 2, the penetration can extend only through
a part of the film thickness. It can be seen in figure 2 that at a=0.1, the gas penetrates the entire film
thickness when X is larger than 0.05. At larger values of X, the concentration increases all across the film
thickness, until at about 0.7, the concentration profile reaches a fully-developed condition. The
concentration profile does not change as the film moves further downstream. This profile is shown as X=co
in the plots. In figure 3, it can be noticed that at a=2, the gas penetrates only through the part of the film
thickness and part of the liquid remains pure. The penetration depth becomes larger and larger as the film
moves downstream, and in the fully developed condition, it just touches the solid wall. The fully-
developed concentration profile for different values of o is demonstrated in figure 4. It can be clearly seen
from the graph that the reaction goes to completion within a part of the film when 022. As o increases,
the fully developed concentration decreases for any particular radial location.

Figures S and 6 shows the variation of Sherwood number (Sh and Sh") along the radius of the disk
for different values of Ekman number. In these plots, both Reynolds number and the chemical reaction
rate are preserved constant. In figure 5, it can be noticed that the Sherwood number decreases downstream
monotonically. As the Ekman number becomes smaller, the Sh’" also becomes smaller. This is due to the
fact that at smaller Exman number (i.e. at larger rotational speed) the film thickness also becomes smaller.
To single out the variation of mass transfer rate with the rotational speed of the disk, Sh is plotted in
figure 6. As expected, the Sherwood number increases with a decrease in Ekman number as the actual
mass transfer coefficient increases with the increase in rotational speed. The effect of Reynolds number
on Sherwood number can be seen in figures 7 and 8. In these plots, the Ekman number and the chemical
reaction rate are kept constant. From figure 7 it can be seen that an increase in Reynolds number causes
an increase in Sh’. This is true, since an increase in the flow rate can cause an increase in the mass
transfer rate. Figure 8 shows the variation of the Sherwood number (Sh) with the radius at different
Reynolds number. It can be noticed that the Sherwood number, Sh decreases monotonically with the
radius. For flow over a rotating disk, at smaller radii the flow is dominated by the inertial force and at
larger radii, it is dominated by the centrifugal force. Figures 9 and 10 show the variation of the bulk
concentration with the radial location, § at different values of Ekman and Reynolds numbers. As expected,
in both these plots, the bulk concentration increases with the radial location at all values of Reynolds and
Ekman numbers.

The effect of reaction rate is shown in figures 11 and 12. The figures show the variation of the
Sherwood number and the bulk concentration with the radius for two different chemical reactions. These
are the reaction of oxygen with the aqueous alkaline solution of sodium dithionite (K=6. 4x10%) and the
carbonylation of methanol (K=1.42x10°). Figure 11 shows the variation of Sherwood Number Sh’ along
the radius for the two chemical reaction rates considered. The Sherwood number, Sh® decreases with an
increase in rate constant k for both the flow systems considered. When the rate constant is larger, an
increase in the mass transfer coefficient might be expected for a given set of fluid properties. But the
dimensionless parameter o also depends upon the diffusion rate, D and the solubility of the gas in the
hqu:d C*. Thus for a given film thickness, the mass transfer coefficient depends upon the quantity
K/(C'D). Therefore, when two different gas liquid reactions (zero-order) are considered, it would be
appropriate to consider the variation of the parameters with respect to the ratio of the quantity k/C'D.
When this quantity is larger, the gas absorption rate increases. This is consistent with the trend seen in
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figure 11. The quality k/C'D for the reaction of sodium dithionite with oxygen is 8.95x10” and for the
carbonylation reaction it is 5.5x10’ m™. Figure 12 shows the variation of bulk concentration with radius
for the two different reactions considered in the study. The bulk concentration shows an increase with an
increase in the reaction rate. o

The enhancement factors (equations 34 and 35) were calculated for different values of X and
different combinations of reaction reate, Reynolds number, and Ekman number. It was found that E_ is
the maximum near the entrance and reduces rapidly with the radius. The larger enhancement near the
entrance may be attributed to the smaller concentration boundary layer thickness in that region.

CONCLUSIONS

An analytical solution for the process of gas absorption to a thin film liquid film adjacent to a
horizontal rotating disk in the presence of a zero order chemical reaction is presented. The analysis
yielded closed form solutions in terms of a series of confluent hypergeometric functions. It was found that
the gas can penetrate all across the thickness of the film only if the dimensionless reaction rate o is less
than or equal to 2. For o>2, the penetration depth can be only a part of the film thickness. It was also
observed that the concentration profile attains a fully developed condition at approximately X=0.7. The
rate of mass transfer increased with flow rate as well as with the rate of rotation. The chemical reaction
influenced the rate of gas absorption at the free surface. The mass transfer coefficient increased with
increase in k/C'D. The enhancement factor was found to be very significant when compared to absorption
in a stagnant liquid film.

NOMENCLATURE

A, integration coefficient for n th eigen value (equation 30)

B constant defined by equation (10)

C Concentration of dissolved gas in the liquid [kmol m?]

c Concentration of the dissolved gas at the interface [kmol m?]

C, integration coefficient for n th eigen value (equation 26)

D liquid phase diffusion coefficient [m’s™)

E Ekman number,v/or’

E, enhancement factor for the case of no chemical reaction

E. enhancement factor for the case of infinitely deep stagnant liquid

G gas absorption rate [kg m? s™']

G, gas absorption rate when the chemical reaction is absent [kg m™ s™']

G.° gas absorption rate without chemical reaction in an infinitely
deep stagnant liquid [kg m? s™]

k zero-order reaction rate constant (kmol m? s}

m dimensionless gas absorption rate

m, dimensionless gas absorption rate when the chemical reaction is
absent

M confluent hypergeometric function

p constant defined by equation (17)

Q volumetric flow rate [m®s?]

r radial coordinate [m]

Re Reynolds number, W&/v

Sc Schimdt number, v/D

Sh Sherwood number, [G(v¥/g)'”)/pD

47



Sherwood number in terms of the film height, G&/pD
velocity in the angular direction [m s']

velocity in the normal direction {m s']

velocity in the radial flow direction [m s']

average velocity along the radius [m s]
dimensionless coordinate in the radial direction
dimensionless coordinate normal to the plate, z/d
coordinate normal to the plate [m]

NMEE<EY

Greek symbols

dimenesionless reaction parameter, k§%/C'D
film thickness [m]

angular coordinate [rad]

eigen value

kinematic viscosity [m? s™)

dimesionless radial coordinate, 1/r;,

density of the liquid [kg m?]

parameter introduced in the auxiliary problem
solution of the auxiliary problem given by equation (24)
dimensionless concentration, C/C”

angular velocity [rad s™']

E€ QADVDITLE OO

Subscripts

in condition at entrance
ave average value across the film thickness
b . mixed-mean (bulk) condition
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TABLE 1. Eigen values and Integration Coefficients

C. a=3 =4

No » o=0 =0.1 o=2 A, C, /. C.
1 2.26311053 1.79238360 1.72977244 0.54016045 2.38906211 0.41660402 2.59139039 0.36164776
2 6.29768520 1.02469014 102672555 1.06539830 6.74541597 0.93826498 7.42019229 0.87219849
3 10.30772681 0.79631238 0.79386970 0.74745885 11.11656887 0.72127416 12.28077919 0.72237188
4 14.31279359 0.67455957 0.67511830 0.68573409 15.49931414 0.63800582 17.15401771 0.64786122
5 18.31592741 0.59583217 0.59511046 0.58139800 19.88870854 0.57066555 22.03297228 0.51668786
6 22.31808871 0.53954469 0.53980138 0.56467864 24.28213765 0.52485522 26.91492866 0.51736060
7 26.31968463 0.49671455 0.49637764 0.48997642 28.67816743 0.48388371 31.79863869 0.42056847
8 30.32091973 0.46270665 0.46285379 0.46564935 33.07595966 0.45403568 36.68345574 0.44504888
9 34.32190893 043485365 0.43466002 0.43098101 37.47499588 041836349 41.56901374 0.39960741
10 38.32272219 0.41149648 041159178 0.41340251 41.87493997 0.40073456 46.45509083 0.35605761
11 42.32340476 0.39154207 0.39141699 0.38903440 46.27556533 0.36863628 51.34154512 0.37809093
12 46.32398727 0.37423651 0.37430322 0.37557063 50.67671399 0.36209288 56.22828181 0.31925983
13 50.32449129 0.35904110 0.35895337 0.35728658 55.07827279 0.33499816 61.11523525 0.34052013
14 54.32493248 0.34555884 0.34560810 0.34654405 59.48015860 0.33538518 66.00235857 0.31814302
15 58.32532250 1.33349027 0.33342546 0.32106149 63.88230912 0.31361091 7088961745 0.28518091
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SUMMARY

An IBM Personal Computer (PC) version of the Groove Analysis Program (GAP) was developed
to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove
geometry and working fluid. In the model, the capillary limit is determined by the numerical solution
of the differential equation for momentum conservation with the appropriate boundary conditions. This
governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and
due to liquid/vapor shear interaction. Back-pumping in both 0-g and 1-g is accounted for in the boundary
condition at the condenser end. Slug formation in 0-g and puddle flow in 1-g are also considered in the
model. At the user’s discretion, the code will perform the analysis for various fluid inventories
(undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will
also calculate the minimum required heat pipe wall thickness for pressure containment at design
temperatures that are greater than or lower than the critical temperature of the working fluid.

This paper discusses the theory behind the development of the GAP model. It also presents the
many useful and powerful capabilities of the model. Furthermore, a correlation of flight test pcrformance
data and the predictions using GAP is presented and discussed.

NOMENCLATURE

Cross-sectional area

Gravitational constant

Permeability

Number of grooves

Pressure

Axial heat flow

Heat transport capability at capillary limit
Meniscus radius

Reynolds number

Groove root radius

Groove root corner radius

Groove tip corner radius

Vapor core radius

Pseudo-land thickness

Wetted perimeter

Groove width

Axial location

Angle 1o define groove geometry in Figure 1
Angle to define groove geometry in Figure 1
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Subscripts

Angle to define groove geometry in Figure 1
Groove land taper angle

Contact angle

Heat of vaporization

Dynamic Viscosity

Kinematic Viscosity

Groove aspect ratio (half groove width/groove depth)
Function defined in equation (5) or (6)
Density

Angular velocity

Surface tension

1 Liquid
v Vapor
vl Vapor/Liquid
X Axial direction

ACRONYMS
ATS Applications Technology Satellite
CRYOHP Cryogenic Heat Pipe Experiment
GAP Groove Analysis Program
HPP Heat Pipe Performance Experiment
NASA National Aeronautics and Space Administration
PC Personal Computer
RPM Revolutions Per Minute

INTRODUCTION

In recent years, spacecraft size and power requirements have increased, along with a corresponding
demand for more efficient waste heat rejection. The design of heat pipe-based spacecraft thermal
management systems requires a clear understanding of the thermal performance and working fluid
behavior of heat pipes in microgravity. On Earth, the strong gravitational field dominates the capillary
forces developed in the heat pipe wick. However, in the absence of gravity, the surface tension forces
within the wick are the heat transport’s limiting factor. One method of predicting 0-g performance is by
extrapolating ground test data, but the presence of a liquid puddle in the condenser can make this
technique unreliable. This is particularly true with axially grooved ammonia heat pipes at the high end
of their operating temperature range and with most cryogenic fluids because of their low surface tensions.

The principal microgravity application of heat pipe technology is cooling electronics packages in
spacecraft and satellites. Commercial telecommunication spacecraft alone are utilizing more than two
thousand heat pipes annually for high power thermal management. The majority of these pipes are
aluminum/ammonia axially grooved tubing because of their simplicity and high reliability. It has been
very apparent that there is a need to accurately predict the microgravity performance characteristics of
a heat pipe to minimize the penalties associated with over-design. One problem that often arises is how
to use ground test data to predict microgravity thermal performance of a heat pipe. In space, the heat
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pipes can aiso be exposed to a wide range of temperatures, and the expansion and contraction of the
working fluid can lead to excess or insufficient fluid inventories. During a cold startup scenario, a heat
pipe containing the correct fluid charge for nominal operating temperatures may be undercharged due to
liquid contraction. One common method of preventing this condition is to overcharge the heat pipe by
5 percent or more. At higher operating temperatures this leads to excess fluid that could form a thick
film over the condenser wick, or a liquid slug, either of which will result in decreased heat rejection
efficiency and higher operating temperatures. Also, as a result of limited heat pipe performance flight
data, thermal systems engineers currently must specify heat pipes with large performance margins to
compensate for possible degradations and uncertainties in heat transport capacity, therein incurring
volume and weight penalties.

Therefore, a design tool is needed to assist the thermal engineers in designing an axially grooved
heat pipe for a particular space application. This design tool must be accurate in predicting the thermal
performance of a heat pipe at any operating condition and also be easy to use. This IBM PC version of
GAP was designed to accomplish both requirements.

MATHEMATICAL FORMULATION

An IBM PC version of the GAP model was developed to predict the steady state heat transport
capacity of an axially grooved heat pipe for a specified groove geometry and working fluid. An example
of the geometry applicable to GAP is the divergent groove shown in Figure 1. A full description of the
model is contained in the user’s manual (Reference 1).

Figure 1. Divergent Groove Geometry
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In the model, the capillary limit of the heat pipe is determined by the numerical solution of the
differential equation for momentum conservation with the appropriate boundary conditions. This
governing equation accounts for the hydrodynamic losses due to friction in the liquid and vapor flows and
due to liquid/vapor shear interaction. Back-pumping which is the capillary force that develops at the
condenser end in both 1-g and 0-g is accounted for in the condenser boundary condition. Slug formation
in 0-g and puddle flow in 1-g are also considered in the model. At the user’s discretion, the code will
perform the analysis for various heat pipe elevations and fluid inventories, including both undercharged
and overcharged conditions. GAP will also calculate the minimum heat pipe wall thickness required for
pressure containment at design temperatures that are greater than or lower than the critical temperature
of the working fluid. .

The capillary pumping limit is the transport limit generally experienced in 0-g heat pipe operation.
Sonic and vapor limits are typically encountered in 1-g applications with very high axial heat fluxes or
when operating near the melting point. The viscous limit becomes important if the pipe is very long and
is operated at lower temperature range of the working fluid. The capillary limit occurs when the capillary
pumping head can no longer sustain the hydrodynamic losses. In the operation of an axial groove heat
pipe, as heat is applied to the evaporator and is removed from the condenser, fluid flows develop within
the heat pipe. The vapor flows to the condenser end and the liquid in the grooves is pumped back to the
evaporator. In addition to the viscous pressure drops due to the vapor and liquid flows, there is an
additional pressure drop due to shearing at the liquid/vapor interface. For steady state operation, the sum
of all these pressure drops and those of body forces must be balanced by the capillary pumping force
developed by the groove opening, i.e.

AP

X,

aary = AP, + AP, + AP, + EAPxM 1

This constitutes the basic hydrodynamic governing equation for an axially grooved heat pipe. A
differential form of this equation can be derived by making the following assumptions:

(1) One dimensional laminar liquid flows in the axial groove and one dimensional laminar or turbulent
vapor flow in the inner core of the heat pipe;

(2) The groove depth is small compared to its wicking height, thus the hydrostatic loss associated with
the groove depth is negligible;

(3) Identical grooves with uniform groove properties for each groove over the entire length; and

(4) Uniform heat transfer in the evaporator and condenser.

The governing equations are thus:

e  Laminar vapor flow (Re, < 2000)

.a_c.ﬂ g..l.a. = p’gSinB + 8}1‘, + ol (1+_Z¢x) & (2)
R?  dx b AR Kap, | 3 A
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*  Turbulent vapor flow (Re, > 2000)

aCosd. 4R 0.06558°% (Q(x))”s LB ( 2 ) ot}

R* dx = pgSinp + p AMTRIZ | 2

where the groove aspect ratio ¢, defined as the ratio of half the groove width to the groove depth, can
be written as
(R,+R) Siny - R,

¢ = = @

and the parameter y, which accounts for liquid/vapor shear (Reference 2) is defined as

e  Laminar vapor flow

4R-R) v, A

= —f > vl ®
. Rv Vi Av
¢  Turbulent vapor flow
025
v, = oomzre BN A By QW ©)
x ) Rg.zs A py, LA

The left hand side of equation (2) or (3) represents the capillary pumping. The right hand side represents
the following pressure losses:

(1) The first term is the hydrostatic loss;

(2) The second term is the viscous vapor loss; and

(3) The third term is the liquid flow loss which combines both the viscous loss and the
liquid/vapor shear interaction. The magnitude of the shear loss relative to the viscous liquid
loss is ¢%¥,/3. The factor 1/3 in this term is recommended in Reference 3 for grooves that
have groove depths larger than groove widths, which is usually the case for axially grooved
heat pipes.

Equations (2) and (3) are solved by using a fourth order Runge-Kutta integration method. The
variables include working fluid properties, axial groove geometries, and heat pipe dimensions. The
boundary conditions and heat distribution are also required to completely specify the problem. The
integration of expression (2) or (3) yields the local meniscus radius required to support the local pressure
drop in each groove. The integration process starts from the evaporator end with a minimum meniscus
radius specified as half the groove width and proceeds to the condenser end. This process is normally
repeated many times with the heat transport rate continuously updated until the boundary condition at the
condenser end is satisfied. The liquid flow analysis conducted in Reference 2 demonstrated that the
maximum transport is obtained when the meniscus radius at the upstream end of the evaporator is a
minimum. Therefore, the boundary condition at the evaporator end for both 0-g and 1-g environments
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for all fluid charge conditions is

@x=0 R=R_ = % )

where R, for the axial groove geometry is shown in Figure 1.

At the condenser end, e.g. x = L, the boundary condition depends on the fluid charge condition and
the gravitational environment. For nominal charge and overcharge, the meniscus radius is set to a
maximum value to obtain the highest capillary pumping in the grooves. In 0-g, the excess liquid will
form a slug in the vapor core at the condenser end. Two radii of curvature both equal to half the vapor
core diameter define the minimum energy condition at the slug’s liquid/vapor interface. Mass continuity
between the liquid slug and the liquid in the grooves in turn dictates an equivalent groove radius in the
condenser. In the code, the meniscus radius at the condenser end is set at half the vapor core radius to
model this condition

R
For0-g, @ x =1 R=R_ - ?" ®

In 1-g, when there is excess liquid in the pipe, a puddle will form at the condenser end. Beyond the
puddle, if preferential drainage is neglected, only one radius of curvature exists in the groove. This
liquid/vapor interface extends from the tip of one fin to the tip of the adjacent fin and its maximum value
is equal to the vapor core radius, i.e.

For 1-g, @ x =1L R=R, = R, &)

For undercharge condition, the meniscus radius at the condenser end is incremented gradually from R,
up to R, until the specified fluid charge is found. Thus, depending on the amount of undercharge and
the gravitational environment, the actual meniscus radius at the condenser end will be between R, and
the value shown in equation (8) or (9).

The program estimates the maximum transport using a closed form solution for liquid losses only.
It then uses an incremental heat load based on this value and solves the differential equation to determine
the axial variation of the meniscus. Once this is known, the corresponding liquid and vapor inventories
are calculated. Repeating this solution procedure will then yield the maximum transport that can be
obtained as a function of fluid inventory up to the nominal charge condition.

FEATURES IN GAP

The IBM PC version of this GAP code is a menu-driven computer program designed for user
friendliness and flexibility not only in the data input but also in the code operation and in the processing
of the output data. The general flow chart of the code is shown in Figure 2. The code is written in
standard FORTRAN 77 and assembly language. It is designed to operate with an IBM PC or compatible
system that employs an 80286, 80386, or 80486 microprocessor with an appropriate coprocessor. The
present code has been intended to be interactive and user-friendly. It can be installed into a PC in a few
minutes and with the interactive data input feature, the user can run the code immediately to get the
results. Other special features of the code include:
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Multiple runs for various heat pipe elevations and over a wide range of temperatures are readily
achieved;

A comprehensive data base that contains the properties of 24 heat pipe working fluids is included
with the code. A listing of these working fluids and their corresponding range of operating
temperatures are included in Table 1; '

For pressure containment, the minimum required heat pipe wall thickness can be determined for
specified factors of safety; and

At the user’s discretion, the desired output data is written to a plot file which can be imported

to most spreadsheet or graphic software programs for fast quality plotting.

Y
CALL SUBSCR l TEMP LOOP |
TO SET SCREEN ‘l
CONTROL CODES
CALL QUIMIT TO
¢ COMPUTE SONIC,
ENTRAINMENT, &
CALL WFPHP1 TO VISCOUS LIMITS
READ IN FLUID PROP

’ ELEVATION LOOP ]
CALL MENU TO INPUT
MAIN CONTROL CODE \

CALL CALC TO FIND
HEAT PiPE TRANSPORT
PERFORMANCE, PRESSURE
CALL INPTSC CONTAINMENT, ETC
YO MODIFY >
INPUT DATA
END
OF ELEVATION
PROCESS OR PPLTFILELE
OUTPUT DATA 2
TO PROCESS
OUTPUT DATA
NO
NO CALL CRTFILE
TO SAVE
INPUT DATA
YES
CALL GMINPT TO mpsu:v:m‘
COMPUTE HEAT PIPE FILE 7
GEOMETRY

l

®

®

<

v

Figure 2. GAP General Flowchart
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Table 1. Heat Pipe Working Fluids in GAP

= ——
Working Fluid Temperature Range (K) Working Fluid Temperature Range (K)
Acetone 250 to 474 Freon 21 21310 449
Ammonia 200 to 404 Freon 113 293 to 368
Argon 85 to 149 Heptane 273 to 472
Benzene 270 to 559 Lithium 500 to 2099
Butane 260 to 349 Mercury 280 to 1069
Cesium 400 to 1499 Methane 91 to 189
Dowtherm-A 373 to 669 Methanol 273 10 502
Dowtherm-E 283 to 609 Nitrogen 65to 124
Ethane 100 to 304 Oxygen 5510 154
Freon 11 293 to 412 Potassium 400 to 1799
Freon 13 163 to 292 Sodium 400 to 1499
Freon 14 130 1o 221 Water 273 to 642
FLIGHT DATA CORRELATIONS

The GAP code was used to predict the heat transport capacity of the axially grooved heat pipes
employed in the Heat Pipe Performance (HPP) (References 4 and 5) and the Cryogenic Heat Pipe
(CRYOHP) (Reference 6) flight experiments. The results were obtained by running the code to predict
0-g performance for each pipe with a nominal charge at various operating temperatures. These results
were then correlated with the flight test data to assess the accuracy of the code. The following sections
discuss the GAP predicted performance and the associated correlations with flight data for these pipes.

HPP Freon 113/Aluminum Heat Pipe

This heat pipe utilizes a rectangular groove geometry with its measured groove geometry shown in
Table 2. The detail of the HPP experiment design is discussed in References 4 and 5. The GAP
predicted 0-g steady state heat transport capacity of the pipe as a function of the operating temperature
range of interest is shown in Figure 3. At 58°C, the pipe is expected to transport about 23 watts before
dry-out occurs. This power level is in excellent agreement with the actual 24 watts obtained in flight.
It should be noted that these pipes were charged for operation at 40°C and have a 4.9% overcharge at
58°C. This charge is based on the accounting for meniscus recession.

The prediction of the heat transport capacity of a heat pipe subjected to adverse spin was determined
in the following manner. First, the maximum transport under a no spin condition was obtained from
GAP. Then, this value was used in the following expression to determine the heat transport capacity of
a heat pipe under adverse spin as:

W
QL = @)y, [1 - TTE0¥RE-R) (10)
g



Table 2. HPP Freon 113/Aluminum Heat Pipe Design Summary

Max Heat Load (W)

e ——
Groove Cross Section Rectanguiar Form
Number of Grooves 40 .
Outer Diameter (inch, mm) 0.499, 12.675
Inner Diameter (inch, mm) 0.437, 11.10
Vapor Core Diameter (inch, mm) 0.364, 9.246
Fin Tip Corner Radius (inch, mm) 0.00428, 0.1087
Groove Root Corner Radius (inch, mm) 0.00409, 0.1039
Pseudo-fand Tip Thickness (inch, mm) 0.00638, 0.1621
Groove Land Taper Angle (radian) 0.047
Groove Width (inch, mm) 0.0143, 0.3635
Wetted Perimeter (I Groove) (inch, mm) 0.0909, 2.308
Total Groove Area (inch?, mm?) 0.0222, 14.31
Evaporator Length (inch, mm) 4.0, 101.6
Transport Section Length (inch, mm) 0.0, 0.0
Condenser Length (inch, mm) 12.76, 324.1

-
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] /L/ngm Data

h (4
25; <

4 —

I GAP|Predicted|0-g Max Heat Load I e
20] —
157
107

5
c L LR B LENR LB LER LI T F 1 LS LA L 1} LI
20 70 80 90 100

Temperature (C)

Do = 12.68 mm Di=11.1 mm Dv = 9246 mm 40 Grooves
Wg =0.3635mm WP = 2,308 mm Rt=0.1087mm Ag = 1431 mm~2

Figure 3. HPP Freon Heat Pipe 0-g Transport Capability vs. Temperature
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where QL = transport capacity of the heat pipe experiencing adverse spin
(QL)max = maximum transport capacity under no spin condition
P = density of the liquid phase
w = angular velocity
o = surface tension
R, = linear distance from the center of rotation to the end of the condenser section
R, = linear distance from the center of rotation to the end of the evaporator section

W

A = groove width

With this procedure, the maximum heat load for the pipe at 32°C versus adverse spin rate is computed.
The data indicates that at a spin rate of about 6 RPM, the pipe can transport a2 maximum power of 6
watts. This result is in good agreement with the flight data which showed that dry-out for the pipe
occurred between 6 and 8 RPM with 6 watts applied.

HPP Water/Copper Heat Pipe

This heat pipe utilizes a rectangular groove geometry. Table 3 provides the groove measurement
of this pipe. The GAP code was used to predict the 0-g steady state heat transport capacity of the pipe
as a function of the operating temperature range as shown in Figure 4. Note that at 50°C, the curve
seems to have a discontinuity. This is the point at which the vapor flow in the pipe is predicted to
transition from a laminar to a turbulent flow regime. The pressure losses due to vapor flow and vapor-
liquid shear in turbulent flow are higher than those in laminar flow; and thus, the slope of the heat
transport curve decreases slightly. With the same procedure used for the freon heat pipe, the heat
transport capacity of this water heat pipe at 72°C was predicted as a function of adverse spin and it is
shown in Figure 5. From this Figure, one would expect a pipe transporting about 40 watts to dry out
at about 10.4 RPM. This turns out to be the case in flight where the measured dry-outs were obtained
between 10 to 12 RPM.

Table 3. HPP Water/Copper Heat Pipe Design Summary

Groove Cross Section Rectangular Form
Number of Grooves 25

Outer Diameter (inch, mm) 0.497, 12.631
Inner Diameter (inch, mm) 0.454, 11.521
Vapor Core Diameter (inch, mm) 0.375, 9.535
Fin Tip Comner Radius (inch, mm) 0.00464, 0.1178
Groove Root Corner Radius (inch, mm) 0.01462, 0.3713
Pseudo-land Tip Thickness (inch, mm) 0.00391, 0.09934
Groove Land Taper Angle (radian) 0.08155
Groove Width (inch, mm) 0.0351, 0.8915
Wetted Perimeter (1 Groove) (inch, mm) 0.1092, 2.775
Total Groove Area (inch?, mm?) 0.0335, 21.622
Evaporator Length (inch, mm) 4.0, 101.6
Transport Section Length (inch, mm) 0.0, 0.0
Condenser Length (inch, mm) 12.76, 324.1
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Figure 4. HPP Water Heat Pipe 0-g Transport Capability vs. T emperature
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Figure 5. HPP Water Heat Pipe 0-g Transport @ 72°C vs. Adverse Spin Rate
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TRW Cryogenic Heat Pipe (CRYOHP)

This heat pipe has oxygen working fluid and employs a rectangular groove geometry with relatively
shallow grooves (~0.8 mm deep) as shown in Table 4. This design was intentionally degraded so that
its heat transport capacity could be tested within the limits of the CRYOHP’s cooling capacity (~ 5 watts
at 80 K). The CRYOHP experiment design and component test results are discussed in Reference 7.

The 0-g steady state heat transport capacity of the heat pipe predicted by GAP is shown in Figure
6 with the flight and ground test data. Flight data points are the actual electrical heater power applied
to the evaporator. The GAP predictions include a 0.8 watt parasitic heat leak from the surrounding
environment to the heat pipe. This heat leak was determined from ground and flight data transients
(Reference 6). The GAP predictions are in good agreement with the flight test data. GAP correctly
predicted the fully dry-out heat load at 69 K and under-predicted the values at 92 K and 102 K by
approximately 0.5 watt. The applied power increments for the TRW pipe are 0.5 watt and therefore there
is up to a 0.5 watt uncertainty when full dry-out occurs.

Also shown in Figure 6 is the 1-g performance at 82 K that was extrapolated from the component
tilt test results presented in Reference 7. At this temperature, the pipe was predicted to be over-filled
as listed in Table 5. The nominal charge required at 82 K as predicted by GAP is 8.54 grams. If the
grooves were filled without any meniscus recession, the charge would increase by 1.05 grams or 12.2%
above the nominal charge with recession. In addition to the amount associated with meniscus recession
and based on the actual 10.3 grams charge, there is an additional 0.71 gram or 8.4% of further
overcharge at 82 K. The 0-g slug length at 82 K for this overcharge condition is 3.63 cm. The GAP
predicted performance at 82 K for a 1-g horizontal test condition was obtained with this overcharge (i.e.
1.76 grams excess) and is plotted in Figure 6. Note that in this 1-g analysis, the same 0.8 watt parasitic
heat leak to the pipe was assumed. This theoretical data point is only 0.3 watt lower than the
extrapolated ground-test data point.

Table 4. TRW CRYOHP Heat Pipe Design Summary

—ee
Groove Cross Section Rectangular Form
Number of Grooves 17
Outer Diameter (inch, mm) 0.442, 11.224
Inner Diameter (inch, mm) 0.349, 8.872
Vapor Core Diameter (inch, mm) 0.2865, 7.277
Fin Tip Corner Radius (inch, mm) 0.004, 0.1016
Groove Root Corner Radius (inch, mm) 0.00508, 0.1291
Pseudo-iand Tip Thickness (inch, mm) 0.02887, 0.7334
Groove Land Taper Angle (radian) 0.1685
Groove Width (inch, mm) 0.0175, 0.445
Wetted Perimeter (1 Groove) (inch, mm) 0.0822, 2.089
Total Groove Area (inch?, mm?) 0.0094, 6.065
Evaporator Length (inch, mm) 6.0, 152.4
Transport Section Length (inch, mm) 40.8, 1015.24
Condenser Length (inch, mm) 6.0, 1524
Fluid Charge (gr) ' 10.3
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Figure 6. TRW CRYOHP Heat Pipe Transport Capability vs. Temperature

Table 5. TRW CRYOHP Heat Pipe Fluid Charge Conditions
Actual Charge = 10.3 gr

I I———— —
Operating GAP Computed Percentage Charge
Temperature (K) (Actual/GAP Nominal)
60 8.93 115.34
70 8.71 118.23
80 8.58 120.11
90 8.40 122.62
100 8.29 124.24
110 8.45 121.89
120 9.05 113.86
130 10.16 101.36
140 12.17 84.61
__ 150 . 18.06 . 57.02 |
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Hughes Aircraft Cryogenic Heat Pipe (CRYOHP)

This heat pipe also utilizes oxygen with the conventional ATS rectangular groove geometry
(Reference 8). Design details of the heat pipe and the groove geometry obtained from a shadowgraph
measurement are listed in Table 6. The oxygen charge for this heat pipe is 33.7 grams.

The GAP predicted 0-g steady state transport capability of this heat pipe is shown in Figure 7 versus
operating temperature. Flight and thermal vacuum test data are also included in this figure. The GAP
predictions include a 1.1 watt uniform parasitic heat leak to the heat pipe from the surroundings
(Reference 6). In general, the flight data is in good agreement with the GAP prediction. A partial dry-
out is the best measure of a heat pipe’s capillary transport limit and these data points correlate almost
exactly over the test temperature range of 100 to 140 K. The model tends to under-predict the dry-out
condition by almost 5 watts at 128 K. This data point was obtained under transient condition because
of inadequate cooling, and transient performance is not an accurate measure of the transport limit.

Also shown in Figure 7 is the 1-g performance at 85 K that was extrapolated from the component
tilt tests in Reference 8. At this temperature, the Hughes heat pipe was predicted to be slightly over-filled
by just 0.1 gram. Fluid charge conditions at other temperatures were predicted by GAP and are listed
in Table 7. Again the performance of this heat pipe at 85 K for a 1-g horizontal position with a 1.14 watt
parasitic heat leak to the pipe was predicted and is included in Figure 7. This single GAP data point is
approximately 1.5 watts lower than the extrapolated ground-test data. The small difference is, however,
well within the accuracy of the groove measurements and the experimental error.

Table 6. Hughes Aircraft CRYOHP Heat Pipe Design Summary

o e
Groove Cross Section Rectangular Form
Number of Grooves 27
Outer Diameter (inch, mm) 0.627, 15914
Inner Diameter (inch, mm) 0.429, 10.897
Vapor Core Diameter (inch, mm) 0.334, 8.484
Fin Tip Corner Radius (inch, mm) 0.0064, 0.1623
Groove Root Corner Radius (inch, mm) 0.00625, 0.1588
Pseudo-land Tip Thickness (inch, mm) 0.00159, 0.0403
Groove Land Taper Angle (radian) 0.0546
Groove Width (inch, mm) 0.0259, 0.658
Wetted Perimeter (1 Groove) (inch, mm) 0.1281, 3.253
Total Groove Area (inch?, mm?) 0.036, 23.226
Evaporator Length (inch, mm) 6.0, 152.4
Transport Section Length (inch, mm) 42.8, 1065.2
Condenser Length (inch, mm) 6.0, 1524
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Figure 7. Hughes Aircraft CRYOHP Heat Pipe Transport Capability vs. Temperature

Table 7. Hughes Aircraft CRYOHP Heat Pipe Fluid Charge Conditions
Actual Charge = 33.7 gr

— _
rl Operating GAP Computed Percentage Charge ||
_lemperature K) 1 Nominal Charge (gr) (Actual/GAP Nominal)

60 35.69 94.42

70 34.78 96.89

80 33.79 99.73

90 32.99 102.15

100 31.68 106.38

110 30.73 109.66

120 30.57 110.24

130 31.20 108.01

140 32.39 104.04

150 36.66 91.93
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CONCLUSIONS

An IBM PC model of GAP was developed to predict the steady state thermal performance of an
axially grooved heat pipe operating in 1-g or microgravity environment. The model is user-friendly and
easy to use. It has been shown to accurately predict the transport capability of axially grooved heat pipes.
For the HPP flight experiment, static dryout limits of the aluminum/freon pipes in microgravity were
obtained and are in excellent agreement with the analytical predictions by the model. The transport limits
of the freon and water pipes under adverse spin also correlate well with the predictions by the GAP
model. For further verification, the computer model was applied to predict the transport limits of two
aluminum/oxygen pipes flown in the CRYOHP experiment. These predictions are also in excellent
agreement with the test data over a wide range of operating temperatures.

In support of the on-going Heat Pipe Performance Reflight (HPP-2) project and with the
recommendations by several users, the current GAP model is being upgraded to accommodate the actual
boundary conditions of an axially grooved heat pipe utilized in most applications. The following features
have been planned for this new version:

* Boiling limit will be included in the calculation of transport limits. Heat diffusion in the heat
pipe wall will be accounted for in this calculation. Therefore, thermal conductivity of the heat
pipe wall is an impartant parameter and will be correlated with the evaporator temperature;

e Asymmetric heating and cooling of the evaporator and condenser, respectively, will be considered
in the computation of maximum heat transport capability. In most practical applications, the heat
pipe is embedded inside a panel, which resuits in non-uniform heating or cooling of the
evaporator or condenser, respectively. In these cases, the heat pipe exhibit lower heat transport
capability because of local dry-out in the grooves; and

e Multiple sections of evaporator, transport, and condenser will also be included in the model.
This feature is critical to account for distributed heat loads along a heat pipe in many
applications.
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ABSTRACT /9, /b

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator
(SINDA/FLUINT) code has often been used to determine the transient and steady-state response
of various thermal and fiuid flow networks. While this code is an often used design and analysis tool,
the validation of this program has been limited to a few simple studies.

For the current study, the SINDA/FLUINT code was compared to four different analytical
solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA
portion) was first compared to two separate solutions. The first comparison examined a semi-infinite
slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature
object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fiuid portion of
the code (FLUINT) was also compared to two different analytical solutions. The first study examined
a tank filling process by an ideal gas in which there is both control volume work and heat transfer.
The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The
resuits of all these studies showed that for the situations examined here, the SINDA/FLUINT code
was able to match the results of the analytical solutions.

INTRODUCTION

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator
(SINDA/FLUINT) program has often been used to determine the transient hydrodynamic and
thermal response of various thermal and fluid networks. For example, the Space Station Freedom's
(SSF) Active Thermal Control System (ATCS) (1] and airlock [2)], the Space Shuttle's ATCS [3}, and
the SSF's Lunar Transport Vehicle Hangar [4] have all been analyzed using this code. While this
code has provided important results in the desigh and analysis of these and other space related
hardware, the validation of this program has been limited.

The validation of any numerical code is important, since once a code has been verified for
several test cases, a user will have confidence that the code can accurately predict the physical
processes of other, more complex problems. In general, there are three main verification methods.
The first method compares the predicted resuits with those of a previously validated code [5]. The
second method uses experimental data to verify the model's predictions [6]. Finally, the predicted
resuits can be compared to those of a closed form analytical solution (7).

To date, the SINDA/FLUINT code has been validated with three simple closed form
solutions [8,9,10] and one relatively complex experimental comparison [11]. The three closed form
solutions considered were the transient conduction in a semi-infinite slab [8], the filling and
decompression of a rigid, adiabatic tank with an ideal gas (9], and the transient heat transfer
associated with a singie phase fluid flowing in a duct {10]. The experimental comparison examined
the combined radiative, conductive, and convective heat rejection process associated with the
operation of the Space Shuttle's ATCS during orbital conditions [11]. For all the tests cases
considered, the predictions of the SINDA/FLUINT code were able to match the results of either the
closed form solutions or the experimental data; however, the program has yet to be validated for
more complex situations such as transient radiation, conduction or fiuid flow phenomenon.

This paper details a validation study of the SINDA/FLUINT program for several simple
situations. The code was validated by comparing its results with those of several closed form
analytical solutions. The SINDA portion of the code was compared to two different analytical
solutions, while the FLUINT portion of the code was also validated with two separate anaiytical
solutions. The results of these studies showed that for the situations examined here, the code was
able to accurately predict the heat transter and fiuid flow processes.
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HEAT TRANSFER IN A SEMI-INFINITE SOLID

The SINDA portion of the code was first validated using the classical closed form solution for
conduction heat transfer in a semi-infinite solid. For this test case, a periodic surface temperature
boundary condition was considered. A schematic of this system and its associated boundary
condition is shown in Figure 1.

Tsurtace = f(7)

X
ﬂ

Figure 1  Schematic of a Semi-Infinite Solid.

The heat conduction in a semi-infinite solid, with no internal generation and constant
thermophysical properties, is governed by the following differential equation,

Pr _aar
ax = a &t (1)

where the variables T, x, a, and t are the temperature, distance, thermal diffusivity, and time,
respectively. To reduce the complexity of the solution process, the temperature is replaced by a
new variable, 6, which is defined as

0=T-T; @

where the subscript i denotes the initial condition. The new goveming equation and the boundary
conditions for this probiem are

20 198

o "o @
6(x,0)=0 @
(=) =0 (5)
©(0,7) = 6008wt )

where 6, and o are the amplitude and frequency, respectively. To obtain a solution for equation
(3), the separation of variables method must be used and for brevity will not be presented here. A
detailed discussion of this solution procedure can be found in Reference 12. The solution to
equation (3) with the appropriate boundary conditions is

S - otz P cog ot - ()] ™

0
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It is important to note that equation (7) is only valid for large values of time since there is a
discontinuity at the initial conditions. in other words, equation (7) cannot accurately predict transient
effects during the first increase of the solid's outer surface.

Once the analytical solution had been obtained for conduction in a semi-infinite solid, a
SINDA model was built for the comparison study. A schematic of this SINDA model is shown in
Figure 2. Here, a series of nodes with a height and depth of unity are placed together. The
lengthwise spacing and thermophysical properties are input parameters and chosen in such a way
that the computational process is simplified.

Figure2  Schematic of the SINDA model.

Figure 3 shows the comparison between the results of the SINDA model and those of the
analytical solution at different depths into the semi-infinite slab. As anticipated, the predictions
show an exponential decay in the oscillating temperature as the depth into the solid increases. In
addition, the predictions also show a phase shift in the oscillating temperatures and is associated
with the time it takes the heat to be conducted into the solid. As is evident, for the parameters
examined here, the predictions are nearly identical to those of the analytical solution. The greatest
temperature difference between the results of the two solutions is less than 1.25 °F. Other
conditions were also examined and a similar error was noted.

COOLING BY RADIATIVE HEAT TRANSFER

The SINDA portion of the code was next validated using a closed form solution of a simple
radiative cooling process in which a warm object cools by thermal radiation to a cold sink. To simplify
the analysis, the lumped capecitance method was employed and the object radiated to one source.
In other words, the entire solid was at a uniform temperature, one cold sink was available and there
was no reflected radiation. To further simplify the analysis, the radiating source was taken to be
diffusive. Applying these assumptions, the heat loss, Q, at an instant in time is given by

Q=ecAc[T¢- T4ind (8)
where ¢ is the emissivity, A is the surface area, ¢ is the Stefan-Boltzmann constant, T is the object's

lumped temperature, and Tsink is the radiative sink temperature. Rewriting equation (8) for
transient conditions and using the lumped capacitance assumption yields

oV T oaseao T T4ng ©
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where the new variables p, V, Cp, and 1 represent the density, volume, the specific heat and time,
respectively. Rearranging and integrating equation (9) yields,

T=Tt

T
oT e Ac
- = 0 10

f T"T4sink pVCpg * (10)

T=T,

where T; and T; are the initial and final temperatures, respectively. Carrying out the integration on
equation (10), yields equation (11)

pVCn[ 1 [T ﬂ;ink)/(Ti'Ts_m_k)_} 1 4T a4 T ]
= . t -
"= eAc 4T3k (T + Tsink/(Ti - Tsink) | * 2T3gink (a" Tonk 2" T ink) (")

Equation (11) reveals that for a given initial temperature, the final temperature is govemed
by the time, t, the sink temperature, Tgink, and the term, pVCp/eAo, (capacitance divided by
radiative conductance). These terms were varied during the verification process. For the present
study, the sink temperature was held at either -100 °F, -200 °F or -400 °F, while the capacitance-
conductance ratio was set at 0.25, 0.5, 1.0 and 4.0. For each simuiation, the initial temperature was
held at 70 °F and the object was allowed to cool for 10 hours.

The results from both the SINDA model and the analytical solution for all the above
conditions are shown in Figure 4. As expected, the cooling process follows a typical exponential
decay, and the higher capacitance (or lower radiative conductance) objects cool more slowly. Asis
evident, the SINDA generated resuits are in good agreement with those of the analytical solution,
since the predicted results are nearly identical to those of the analytical solution. The greatest
temperature difference between the resuits of the two solutions is less than 1.5 °F, which
corresponds to an error based on absolute temperature of less than 0.5% .

FLOW BETWEEN TWO INFINITE RESERVIORS OF PRESSURE

When two infinite reservoirs of different pressure are connected by a circular duct, such as
those shown in Figure 5, the flow rate between the two, neglecting any entrance effects, is related
by the following expression,

L V2

APspr—z- (12)

where P is the pressure, p is the density of the working fluid, f is the friction factor, L is the length of
the duct, D is the diameter of the duct, and V is the velocity of the fluid.

Y

P1 D P 2
= —
L
Figure 5 Schematic of the System.
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The velocity of the fluid is related to the mass fiow rate by
V=mpA (13)

where m is the mass flow rate and A is the cross sectional area of the duct. The area of the duct is
given by

A = zD2/4 (14)
Substituting equations (13) and (14) into equation (12) and rearranging yields
8fm2L
AP = o205 (15)

Solving for the friction factor gives

_APor2DS
f=amaL (16)

For laminar flow the friction factor is given by
f = 64/Re an
where Re is the Reynolds number which is given by \

VD
He:T (18)

where v is the kinematic viscosity. For turbulent flow the friction factor is a function of the Reynolds
number and the wall roughness ratio (e/D). The value of turbulent friction factors must be
determined experimentally and can be found on the Moody chart [13]. Reviewing equations (12)
through (16) shows that for a given fluid if the pressure difference, pipe diameter and length are
fixed, the velocity can be determined, directly for laminar flow and iteratively for turbulent flow. As
such, any numerical code that is developed correctly should be able to accurately predict fluid
velocities when the other parameters are fixed.

For the system shown in Figure 5, a simple FLUINT model was developed. The duct was
represented by the TUBE option so that intemal pipe friction would be included in the model. The
pressure source and sink were represented by plenums (PLEN in FLUINT) which maintained a
constant pressure at the ends of the TUBE. A schematic of this FLUINT model is shown in Figure 6.

For the current study, the pressures of the PLENS, and the pipe length and diameter of the
TUBE are fixed. The model is then run in a steady-state mode until a converged solution is
obtained. Using this flow rate, the friction factor and Reynoids number were calculated (Equation
(16) and (18)) and compared to the analytical solutions. If the FLUINT code is properly developed,
the predictions should match the analytical solution or the Moody chart values.

PLEN TUBE PLEN
100 300 200
Figure 6 Schematic of the FLUINT Model.
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The model was run over Reynolds numbers ranging from 1 to 106 for four different values
of /D and the predicted friction factors can be found in Figures 7 and 8. When laminar flow was
considered (Figure 7), the friction factor was found to be independent of the wall roughness and a
linear function of the Reynolds number. For this situation, the predicted FLUINT results are nearly
identical (< 0.1%) to those of the analytical solution. :

When the fiow is turbulent (Re > 2300), the friction in the pipe is a function of the both the
Reynolds number and the wall roughness. The greater the wall roughness, the great the friction
factor. The predicted friction factors in the turbulent regime for various wall roughness ratios can be
found in Figure 8. As is evident, the predicted friction factors agree with those taken from the
Moody chart and also shows the dependence of the friction factor upon wall roughness after the
laminar regime.

TANK FILLING WITH HEAT TRANSFER AND CONTROL VOLUME
WORK

Development of the Analytical Solution

Many thermodynamic processes involve unsteady flow and are difficult to analyze; however,
several processes, such as the filling of a closed container, can be approximated by a simplified
model. These types of problems are known as uniform-state, uniform-flow (USUF) processes. The
basic assumptions for this flow condition are as follows:

1) The thermodynamic state of the mass within the control volume may
change with time, but at any instant of time the state is uniform throughout
the entire control volume.

2) The thermodynamic state of the mass entering the control volume is
constant with time.

Min

— ]

/ Work
of

cv

Figure 9  Schematic of the System.
Using these assumptions and Figure 9 as a guide, the first law [14] can be simplified for a

tank filling scenario with heat transfer and control volume work. With no velocity or gravity potential
terms, the first law for this tank filling process is, ‘

Minhin = M2u2 - MUy + Wey + Qey (19)
where m is the mass, h is the enthalpy, u is the intemnal energy, W,y is the total control volume work,
and Qgy is the total heat transfer. The subscripts in, 2, and 1 denote the inlet, final and initial states,
respectively. From the continuity equation, the following relationship can also be developed.

Min =M2 - My (20)
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Substituting equation (20) into equation (19), replacing the enthalpy with CpT and the internal
energy with CyT (the assumption of constant specific heats) yields

(m2 - m)CpTin =maCyT2 - MGyTy + Wey + Qey (@1)

where Cp, Cy and T are the constant pressure specific heat, the constant volume specific heat and
temperature, respectively. Incorporating the ideal gas law (PV=RT) into equation (21) gives

Vo P4V PaV P,V
Frx " Ty ) OoTin =y O T2 iy OvT1 + W + Qo (=2)

where P is the pressure, V is the volume, and R is the specific gas constant. Rearranging equation
(22) produces

P2 PiViar _(p,.P1V1 WeyR QR
T2 T1v2)cpT|n (Pz v2 CV"' V2 + v2 (23)

Dividing by the constant volume specific heat, Cy, and defining a new variable
Vi_1

V2=V (24)
equation (5) becomes,

P2 . P1L\r _(p,.P1), WevR QR

T2 - T,)KTn=(P2- 1)+ oy ooz (25)
where k is the ratio of the specific heats. Rearranging equation (7) gives

_P_a _ szr' P1 Pl ch R ch R

T2 = KTV *TiVr* KTinCyVz * KTinCyVz (28)
Solving for the final temperature gives,

P2
To =
®T(PaVi-Py P WeR QR (@)
KTinVr TiVe © KTinGyWVa2 7 KTinGyV2
Further simplification yields,
__kPaTqT;
To = PaT1TinVy (28)

((sz, CPy)T1 + kPiTip + WerBT1  Qey RT1)

Wi * TGWV2

Reviewing equation (28) shows that when work or heat leaves the control volume, the final
temperature will be reduced compared to a system in which these quantities are absent. It is also
important to note that in the absence of work and heat transfer, equation (28) reduces to a common
equation that is used to estimate final temperatures in rigid adiabatic containers [14].

In writing equation (28) it is assumed that the total work, Wy, that occurs between the initial
(1) and final (2) states is known or can be determined. In general, the work term is not constant and
varies with both system pressure and volume. From thermodynamic relationships [14], the total
control volume work is defined as
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2
Woy = dev (29)

Typically, volume is related to the pressure by an arbitrary function.

V=1P) (30)
Similarly the pressure is related to the volume by the inverse function

P=t1(V) (31)
Replacing the pressure term in equation (29) with equation (31) gives

2
Wy = Jf" (V) dv (32)

For the present study, the function, f(P), was chosen so that the integral could easily be
evaluated. The manipulation of the SINDA/FLUINT code to include control volume work will be
discussed shortly in an upcoming section. ‘

Deveiopment of the SINDA Model

Figure 10 shows a schematic of the FLUINT model that was used to validate the code.
Here, a TANK is connected to a PLEN (PLENum) by an MFRSET (Mass Flow Rate SET). By using
the TANK option, the first assumption for USUF processes (uniform state within the control volume)
is met. The use of the PLEN ensures that the second USUF assumption of constant inlet
properties is also maintained. To ensure that the working fiuid is an ideal gas, an 8000 series fiuid,
using nitrogen as the working fiuid, was developed and employed.

g\
TANK =0 PLEN

MFRSET

Figure 10 Schematic of the FLUINT Model.

While the SINDA/FLUINT program does not directly calculate (include) work terms for
expanding (or contracting) control volumes, the code does caiculate the thermal and hydraulic
response of compliant (soft) TANKSs. In the code, the compliance is defined as

1dv

Therefore, if there is a function relating pressure and volume, an expanding control volume can be
included in the FLUINT model, and by using equations (29) through (32), the control volume work
can then be determined for the analytical solution.

Before the results are examined, it is important to first review the analytical solution.
Equation (28) has been derived from a basic thermodynamic equation which was integrated over
time. While the FLUINT code uses a rate based thermodynamic equation, the code integrates this
equation over small discretized time intervais and the starting conditions at one time step are taken
from the final conditions of the previous time step. This procedure employed by the FLUINT is the
numerical equivalent of an integration. Since FLUINT has been developed using rate based

79



equations and the analytical solution uses overall heat transfer, one of the soiution methods must
be modified. To modify the heat transfer terms so that they can be included in the analytical
solution, all that is required is that the FLUINT heat transfer term (QDOT in FLUINT) be multiplied by
the total run time (TIMEN) and thus total heat transfer.

Resuits

The comparison study was conducted in several steps. First, the mode! considered
situations where only heat transfer or the volume changed. The model was then run for situations in
which there was both simultaneous heat transfer and control volume work. For all the cases
examined, the initial pressure and temperature within the storage container was set to 100 psia and
70 °F, respectively, while the iniet temperature was held to 70 °F. The final pressure of the tank was
limited to 1000 psia. The volume of the TANK was initially set to 0.5 ft3. The results from these
studies are summarized in Tables 1 through 4.

Figure 11 shows the predicted control volume temperature as a function of pressure for a
variety of cooling rates with a fixed volume. As expected, the greater the heat loss, the lower the
predicted temperature. In other words, a portion of the heat of compression is removed, resulting in
lower predicted temperatures. More importantly, however, is to note that regardless of the heat
transtfer rate, the predictions are nearly identical to those of the analytical solution.

Figure 12 presents the analytical and predicted control volume temperature as a function of
pressure for various heating rates. For these cases, the higher the heat addition, the higher the
final volume temperature. Again, the predicted results are nearty identical to those of the analytical
solution.

Figure 13 shows the predicted and analytical solution temperatures for the situation of an
expandable control volume in which there is no heat transfer. Since a portion of the working fluid's
energy must be used to produce work, the temperatures are lower then for the case in which the
volume is fixed. For this situation too, the code was able to predict resuits nearty identical to those
of the analytical solution.

Figure 14 presents the analytical and predicted temperatures for the conditions which
include both control volume work and heat transfer. The volume is equal to the pressure multiplied
by a constant. Depending on the situation examined, the predicted temperature was either greater
(heating) or less (cooling) than the base case. As is evident, the code was able to match the results
of the analytical solution.

SUMMARY AND CONCLUSIONS

This paper details a validation study of the SINDA/FLUINT program for several simple
situations and focused on the major building blocks of the SINDA and FLUINT portions of the code.
The code was validated by comparing its results with those of four closed form solutions. The
thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first
compared to two separate solutions. The first comparison examined a semi-infinite siab with a
periodic surface temperature boundary condition. Next, a small, uniform temperature object
(lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the
code (FLUINT) was aiso compared to two different analytical solutions. The first study examined a
tank filling process by an ideal gas in which there is both control volume work and heat transfer. The
final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results
of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able
to match the results of the analytical solutions.

To date only one large scale SINDA/FLUINT mode! has been built and used to validate the
FLUINT code [11] and the interaction between SINDA/FLUINT modeling components has yet to be
examined. Therefore, future studies should be devoted to building large sized models which can
be verified by either analytical solutions or experimental data.
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Table 1 Predicted and Analytical 'T'emperatures for Various Heat Loading Conditions.
Initial Conditions P1 = 100 psia, Ty = 70 °F, Tip = 70 °F, Pfina = 1000 psia

SINDA/FLUINT Analytical
Thnal Thnal Q Volume
P : %) (Btu/hr) Relationship
253.02 253.46 0.0 V=C
241.29 241.63 -500.0 v=C
229.58 229.75 -1000.0 v=C
193.65 193.64 -2500.0 V=C
132.69 132.30 -5000.0 v=C
5.77 5.05 -10000.0 V=C

[Table2  Predicied and Analytical Temperatures for Various Heat Loading Condftions.
Initial Conditions P1 = 100 psia, Ty = 70 °F, Tj, = 70 °F, Pfina) = 1000 psia

SINDA/FLUINT Analytical

Thnal Thnal Q Volume

P P (Btuhr) Relationship
253.02 253.46 0.0 V=C
264.57 265.22 500.0 V=C
276.13 276.96 1000.0 v=C
310.59 ’ 311.76 2500.0 V=C
366.44 368.39 5000.0 V=C
473.25 476.80 10000.0 V=C

[Table 3 Predicted and Analytical Temperatures for Volume Relationships
Initial Conditions Py = 100 psia, T1 = 70 °F, Tin = 70 °F, Pjina = 1000 psia

SINDA/FLUINT Analytical
Thnal Tinal Q Volume
(F) cP (Btwhr) Relationship
253.02 253.46 0.0 v=C
156.12 157.01 0.0 V=CP
125.55 125.38 0.0 V=CP2
189.30 189.66 0.0 V=Cp1/2

Table4  Predicted and Analytical Temperalures for Various Heat Loading Conditions and

Volume Relationships.
Initial Conditions Py = 100 psia, T = 70 °F, Tj, = 70 °F, Pfinal = 1000 psia
SINDA/FLUINT Analytical
Thnal Thnal Q Volume
) F (Btwhr) Relationship
156.12 157.01 0.0 V=CP
133.83 133.70 -1000.0 V=CP
180.19 180.29 1000.0 V=CP
40.84 40.21 -5000.0 V=CP
272.59 273.57 5000.0 V=CP
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SUMMARY

A transient, one-dimensional numerical code is developed to model the liquid motion in an axial
groove with square cross section. Axial variation in liquid level, shear stress and heat transfer between
the groove wall and the liquid, evaporation and transient body forces are accounted for in the model.
Dryout and rewet of the groove are allowed; the front location is determined numerically using
conservation of mass and linear extrapolation. Several numerical test results are presented and discussed.

INTRODUCTION

Heat pipe technology has been proposed for use in the aerospace environment as a means of
cooling electronics on fighter aircraft or as a means of thermal management aboard space-based platforms
(refs. 1-3). These environments are dynamic ones where time-varying body forces will primarily influence
the motion of the working fluid within the wick structure of the heat pipe. While the magnitudes of the
body forces in these two examples may be quite different, the effect on the working fluid in the wick is
the same; namely, a bulk movement of the fluid towards either the evaporator or the condenser, depending
on the magnitude and orientation of the body force. If the bulk motion of the fluid is towards the
condenser, then dryout of the wick structure will be enhanced and heat pipe failure will result. The ability
to correctly model liquid motion in a wick structure subject to transient body forces, then, is a necessary
first step before heat pipe technology will be accepted as a means of thermal management in the aerospace
industry.

Several attempts have been made to numerically model the liquid flow in a heat pipe wick. Two
models repeatedly found in the literature are the Groove Analysis Program (GAP), developed by NASA
(ref. 4) and a piston model developed by Beam (ref. 5). GAP is a steady-state formulation that is
applicable only to grooved wick structures. Because it is steady-state, it does not account for the time-
varying nature of body forces. It properly models the axial variation in radius of curvature; however, this
radius of curvature is only allowed to vary from a minimum at the evaporator (equal to one-half the
groove width) to a maximum at the condenser (equal to the radius of the vapor space). Because of this,
dryout is never allowed to occur and therefore, it provides no capability to predict or model the dryout
and rewet phenomena.

The piston model of Beam; however, is an unsteady formulation that does account for transient
body forces. The wick is assumed to be entirely full up to the dryout front, past which no liquid may be
present. The front is perpendicular to the axial direction, hence the reference to a piston. Because the
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wick is assumed to be entirely full up to the front location, no recession of liquid and therefore, no radius
of curvature, is allowed axially along the wet portion of the wick. In an actual heat pipe, recession of the
liquid into the wick structure occurs continuously between the evaporator and condenser without causing
dryout and always occurs as a precursor to dryout. Visual observations of Reagan (ref. 6) and Hawthorne
(ref. 7) have verified this behavior. Because no liquid recession into the wick is allowed, the piston model
predicts dryout earlier than actually occurs.

A limitation of both models is that neither attempts to describe the nature or behavior of the liquid
front within the wick. In the GAP model, no liquid front is allowed to develop; the simulations are
stopped when the capillary limit is reached. In the piston model, the front is treated like a piston with no
attempt to describe what it actually looks like.

Additionally, both models assume that momentum changes in the liquid are negligible. This
reduces the momentum equation to a form of Darcy flow, which models the pressure drop by equating
the sum of pressure, shear and body force terms to zero and neglects any change in the liquid inertia.
During steady-state behavior, the liquid velocity is small and hence, inertia effects are most likely
negligible. The same conclusion cannot be deduced for the case of a transient body force environment.
A new transient numerical model is therefore warranted.

THEORY

Several assumptions are made concerning the derivation of the governing equations. The wick
is an axial groove with square cross section of constant width, w and depth, 5. One end of the groove
can be tilted relative to the other end which provides the transient body force. No flooding of the groove
is allowed and the pressure above the liquid in the groove is assumed constant and equal to ambient
pressure, P_ .

The working liquid is ethanol and is assumed to be incompressible with density, p = 785 kg/m’.
Laminar flow within the groove is assumed at all times and kinetic and potential energy changes are
assumed negligible with respect to changes in the internal energy. Free convection and radiation losses
to the environment are also considered negligible with respect to the energy lost via evaporation.

Consider the control volume shown in Figure 1. This control volume encompasses the liquid only
and not the groove structure. The liquid flow is from left to right and the meniscus level is assumed to
vary linearly through the control volume. The equation of conservation of mass for this control volume,
noting that p dx is constant, yields

94, dAV)  m, 1
3 e a0 (

where 4 is the liquid cross-sectional flow area, V is the average liquid velocity and 1 is the evaporative
mass flow rate for the differential control volume.

Figure 2 shows the same control volume with the appropriate forces (solid arrows) and momentum
terms (dashed arrows). The groove with the liquid is tilted at an angle, v , around a center of rotation
relative to the horizontal level and this angle is a function of time, which provides the transient body
force, pAgsinydx (g = gravitational constant). Momentum changes within the liquid, evaporative
momentum flux, shear and capillary forces are all accounted for. The meniscus radius of curvature, R,
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Figure 2. Control Volume for Conservation of Momentum Analysis
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is a function of the liquid cross-sectional flow area and therefore can vary with axial location. The
(pAQZ%x)dx term is a fictitious force term which accounts for the non-inertial reference frame of the
governing equations. Applying conservation of momentum to this control volume yields

m V sin
a(AV) a(AV fi)=;‘y—Agsmw _%—_I(Pw-%)wtanyh‘ﬂlzx (2)
P p

ot -3_ P pdx

where v is the angle generated by the axial variation in meniscus level, V, is the evaporative mass flux
velocity, T is the shear stress between the groove wall and liquid, A is the area over which the shear stress
acts, o is the surface tension coefficient and Q is the angular rotation rate.

The average liquid pressure, P, at any axial location is assumed to be the ambient pressure minus
the capillary pressure due to the curved interface, plus the pressure head due to the depth of liquid in the
groove. The average depth of liquid in the groove, h, is approximated by /= A/w, and the average
pressure head can be shown to be Y2pghcosy. The average liquid pressure then, is a function of the
groove tilt angle, y, the cross-sectional flow area, A, and the meniscus radius of curvature, R.

This meniscus radius of curvature is a function of the liquid cross-sectional flow area and is
assumed to behave as shown in Figure 3. When the groove is entirely full of liquid, there is no meniscus
and the radius of curvature is infinite. As liquid evaporates or is moved by bulk motion, the meniscus
recedes into the groove and R decreases from infinity until a hemispherical shape is formed. The radius
of curvature at this condition is R = w/2. This hemispherical shape remains constant until the tangent
to the meniscus is coincident with the bottom of the groove. As more liquid is removed by bulk motion
or evaporation, the meniscus recedes further into the corners of the groove and the radius of curvature
continues to decrease. This decrease is allowed to continue until the resulting liquid pressure is zero--a
physical limitation. These three conditions (entirely full, initial hemisphere shape and tangent condition)
allow a mathematical relationship between the cross-sectional flow area and the radius of curvature to be
derived. Details of this derivation are found in Reference 6.

The shear stress between the groove wall and the liquid, 7, is modeled using

foVv: 3)
2

T=

where the friction coefficient, f, is determined using rectangular tube flow data from Shah (ref. 8) and
modified for channel flow according to Chi (ref. 9). The remaining quantities in Eqn (2) (evaporative
mass flux, groove tilt angie and angular rotation) are assumed to be known or measurable quantities.

The energy equation for this system is derived using the control volume in Figure 4. The total
energy per unit mass is approximated by the internal energy, E= e = c, T, where ¢, is the liquid specific
heat and T is the bulk liquid temperature. The energy influx, Q,, 1s modeled usmg Newton’s Law
Q,,=h,A, (T, -T), where A, is the groove wall area across which the heat energy travels, T, is the
groove wall temperature whxch is assumed known or measurable, and A_ is the transfer coefﬁcxent This
coefficient was calculated using
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Figure 3. Meniscus Behavior in a Square Groove
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where Nu is the Nusselt Number, £ is the liquid thermal conductivity and D, is the hydraulic diameter.
Nu was determined using convection correlations for constant surface heat flux (ref. 10), laminar tube flow
and corrected for channel flow similar to the method used for the friction coefficient (see ref. 6 for more
information).

The energy outflow, Q_,, is determined using Q_, =ri, A, where A is the latent heat of
vaporization. Q_ . is the rate of energy conducted axially through the control volume and was calculated
using Fourier’s Conduction Law. Applying these definitions, the energy equation for this control volume
is written as

d d P (Q,-Q,.) 190,
9 + AV + 2 l= in out -2 co (5)
at(AE) -gf( [E pD pdx p ox

Eqns (1), (2) and (5) form the set of governing equations for the new model. The pressure-area
and radius-area relationships discussed previously provide closure for the system. The temporal derivative
terms are grouped into a 3 x 1 matrix, U, and the spatial derivative terms are grouped into a 3 x 1 matrix,
E. The remaining terms are combined into a source term, S and the resulting system is written as

U+E=§ 6)

where the subscripts 7 and x refer to time and space derivatives respectively. Eqn (6) is non-
dimensionalized and integrated using a first order accurate, explicit Roe scheme. Details of the solution
methodology are found in Reference 6.

BOUNDARY CONDITIONS

The integration is performed on a one-dimensional grid, GRIDI, that is I nodes wide as shown
in Figure 5. Node 1 lies on the left boundary; this node is also the center of rotation of the groove. As
such, it always contains liquid and because of the physical boundary, the velocity is always zero. The grid
extends to I nodes, some or all of which have liquid in them, depending on the dryout/rewet front location.
Node nb refers to the last wet node and is only equal to node I if the groove is fully wet. The grid
remains fixed to the groove structure and does not move with the liquid.

At time level n, the total mass of liquid in the groove, m_, is known. At time level n+1, assuming
mass loss only by evaporation, the total mass of liquid in the groove is

nb
mg"'1 =m - E At (7

i=2
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Figure 5. Numerical Grid Definitions

A second grid, GRID2, is used to update the boundary conditions and is also shown in Figure 5.
The mass within any control volume using this grid is found using

m;" = pAx(A" +A") 8

and the internal mass, m,,, is calculated by summing m," between volumes 3 and nb. Applying the
principle of conservation of mass to the leftmost control volume of GRID?2 yields the area of node 1 as

my" = my = At (i) + i)
9

2 n+l
=>Alnol = mZ _Aznd
pdx

The velocity at node 1 is zero because of the physical boundary and the temperature is updated assuming
an adiabatic end condition.

The remaining mass in the groove, m_, at time level n+1 is found by subtracting the internal mass
and the mass at node 2 calculated in Eqn (9) above from the predicted mass at time level n+1 (Eqn (7))
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If the groove is not in a state of dryout, then m_-occupies control volume I and the area at node I is found
by a simple average of the areas at nodes I and I-1. The velocity at node I is identically zero and the
temperature is updated assuming an adiabatic end condition.

If, however, the groove is in a state of dryout or rewet, then a front exists and m_ occupies some
specified volume extending beyond node nb. Several possibilities exist regarding the distribution of liquid
extending beyond this node. Two of the more obvious are seen in Figure 6. The first order
approximation fills a right triangle with the remaining mass, while the second order approximation
attempts to match the remaining mass to a parabola with a specified slope at the front location. Higher
order matches are also possible. For this work, the first order approximation is used.

—_— T First Order

n+1 Tl
A " Sl e Second Order
Vn+] T
nb \\\‘\
-

Figure 6. Sample Front Approximations

Defining the location in the groove where the cross-sectional flow area goes to zero as the
extinction point, ep, then the distance between node nb and the extinction point is

g 22 ain
Y pas!

This length can extend to one or to several nodes beyond node nb or it may not even extend to node nb+1
depending on the magnitude of m_. Regardless, the boundary conditions at the extinction point are
defined by the following relationships
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Figure 8 shows the results of a ten second real time computer run. This is a three-dimensional
plot of the non-dimensional area distribution in the groove, A* , as a function of non-dimensional time,
r* , and non-dimensional axial groove location, x* . Each axis runs from a minimum value of zero to a
maximum value of one. The perspective of the liquid distribution is from an observer positioned on the
groove. According to the figure, the area distribution does not vary with time from its initial level value
of 0.5 (one-half full); the steady-state condition.

Test Two--Steady Body Force

This test was accomplished similarly to the first test; the only difference being in the initial groove
angle and liquid distribution. The groove is set at an initial angle of, y, . = tan~'(8/L_) , and the initial
distribution of liquid is such that A* = 1 at the left end of the groove (x* = 0) and A* = 0 at the right end
(x* = 1) with a linear distribution in between, as shown in Figure 9. This provides the same volume of
liquid used in the first test. In the absence of any capillary or body forces, there should be no tendency
for the liquid to change from this position, which is the steady-state solution for the initial conditions.

Figure 10 shows the results of a ten second real time computer run and reveals no change from
the initial distribution described above. This result demonstrates that the hydrostatic and atmospheric

pressure forces, along with the body force, are modeled properly and coded correctly.
Test Three--Steady Body Force With Motion

It was necessary to determine if the code could predict the correct steady-state solution for an
initial condition other than steady-state. To demonstrate this behavior, a setup identical to test two was
used with the initial liquid distribution similar to that of test one and is shown in Figure 11. From this
initial condition, the liquid should begin to flow towards the left end of the groove (x* = 0) and reach the
steady-state conditions of test two.

Figure 12 shows the results of a ten second real time computer run. Note that as time progresses,
A* increases at x* = 0 and decreases at x* = 1. This shows bulk liquid motion towards x* = 0, and at
r* = 1, steady-state conditions are achieved. This test demonstrates that the code predicts the correct
steady-state solution for a non steady-state initial condition.

Test Four--Steady Body and Capillary Forces

This test was performed to determine if the capillary force was modeled and coded properly. The
initial conditions for this experiment are seen in Figure 13. The groove tilt angle was similar to test three
and the liquid distribution was the same as test two. In the absence of the capillary force, it was seen in
test two that the liquid had no tendency to move. However, if the capillary force is now considered, the
liquid should have a tendency to move towards x* = 1 since the liquid in that end has receded further into
the groove and the capillary influence should be greatest.

Figure 14 shows the results from this study. With the capillary force present, the liquid does
indeed move towards x* = 1 as seen by the increase in A* at x* = 1 and a corresponding decrease in A*
at the other end of the groove, x* = 0. The liquid approaches a steady-state distribution different from
the steady-state condition seen in Figure 10. This is due to the inclusion of the capillary force.
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If d , is less than Ax, then m, is not sufficient to extend the triangular profile to the node nb+1. In this
case, the area, velocity and temperature distributions of the liquid are completely defined and no further
calculations are required.

If, however, d is greatcr than Ax, then the remaining mass is sufficient to extend the profile to
node nb+1. In this case Ay is calculated using the area at node nb and the slope from Eqn (12).
Applying conservation of mass on the control volume between nodes nb and nb+1 yields the velocity as

a _(oV "
AV, - -
(AV), (‘3; )M P (13)

n+l
Anb‘l

n+l
an‘l -

where V is the volume of the differential element. A first order approximation to the volume derivative
term is used and the evaporation term is evaluated at the temperature of node nb at time level n+1. The
temperature is updated assuming no axial conduction.

After the area, velocity and temperatures are updated, the mass in the new control volume is
calculated and subtracted from m, and a new m_ is established. Node nb+1 is renumbered as node nb
and a new value of d,, is calculated and established. The procedure described above is repeated until this
new value of dep is less than Ax .

NUMERICAL TEST PARAMETERS AND RESULTS

Several numerical experiments were performed with the new model to establish confidence in its
ability to model the flow of liquid in a heated capillary structure subject to transient body forces. Since
no comparisons to physical data are made, absolute accuracy of the results is not considered important.
However, correct trends need to be demonstrated as well as the ability to numerically model the formation
of a front in the groove structure.

Test One--No Body Force

The purpose of this test was to demonstrate that liquid in a groove that is initially level and
remains level should have no tendency to move. The test setup is shown in Figure 7. The groove, shown
by the dotted line in the figure, is a square channel. The width, w , and depth, 5 , are 1.5875 mm, where
the width dimension is into the page. The groove length, L_ , is 0.254 m, the liquid is ethanol and the
capillary force and evaporation are neglected. In this test, the groove is maintained at the ambient
temperature, 7 = 295K , and is not allowed to rotate. The initial area distribution is such that the groove
is exactly one-half full. This is represented by the shaded area in the figure.
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Figure 7. Numerical Test One Parameters

Figure 8. Numerical Test One Results
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The remaining three numerical experiments were performed with the capillary force and
evaporation present. The goal of these remaining experiments was to determine the code’s ability to
model the liquid motion in the groove under transient body forces and external heating; two important
parameters that were neglected in tests one through four. The magnitude and duration of the body forces
and heating were sufficient to result in dryout in the groove:. a phenomenon also not studied in tests one
through four.

Test Five--Transient Body Force, No External Heating

This test was performed to determine if the code could capture the formation of a dryout front in
a groove that was subject to a transient body force but no external heating. No external heating refers to
no externally applied heat sources, such as a heater. It does not mean that no heat transfer takes place;
in fact, heat transfer does occur in the form of evaporation.

In this test, the groove was initially at a level condition and one-third full of liquid. The groove
was rotated through the schedule shown by the bold line in Figure 15. This schedule was

y=y, . sin2ror) 0<1<5

y=0 t>5

with a maximum angle, y,__, of 0.0524 radians and a frequency of ® = 0.1 Hz. This particular schedule
was chosen after numerous numerical test runs because it resulted in a partial dryout of the groove
followed by a rewet. The results of this test run are shown in Figure 16. As the transient body force is
applied, the level of liquid at x* = O increases and the level at x* = 1 decreases, indicating bulk liquid
motion towards x* = 0. At approximately * = 0.3 , the groove begins to dry out as noted by A* = 0 at
x* = 1. As the tilt schedule reverses direction back towards the initial level condition, the liquid motion
follows and the rewet is captured by the increase in A* from its zero value. At r* = I, the liquid
distribution in the groove is not level as steady-state conditions would dictate. The code was allowed to
run for additional time and the liquid distribution did eventually reach a quasi-steady-state condition. This
quasi-steady-state refers to the liquid level in the groove being uniform along its length but decreasing in
time due to evaporation of the liquid. The time shown in Figure 16 was chosen to reveal details of the
dryout and rewet. This experiment validated the code’s ability to capture a dryout and rewet due solely
to a transient body force.

Test Six--No Body Force, External Heating

This test was performed to determine if the code could capture the formation of a liquid front in
a groove subjected to external heating but no transient body force. In this test, the groove was initially
at a level condition and entirely full of liquid. The groove was kept level throughout the test as shown
in Figure 17. The left end of the groove was maintained at 7 = 295K , while the right end was
maintained at 7 = 345K , with a linear distribution of temperature between x* = 0 and x* = 1. A
maximum temperature of 345 K was chosen to remain below the boiling point of ethanol. This test was
carried out for 480 seconds. For the first 420 seconds, the temperature profile described above was used.
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This was done to generate a dry region in the groove. Between 420 and 480 seconds, the temperature
profile was reduced to a uniform temperature of T = 295K to allow a rewet to occur.

The results of this experiment are seen in Figure 18. Several interesting trends are seen in this
figure. First, the decrease in liquid volume between t* = 0 and r* = 1 is evident by the decrease in A*
along the groove. Note however, that the rate of decrease in A* is greater at x* = 1 than at x* = 0. This
is due to the elevated temperatures as x* approaches one. Higher temperatures result in higher evaporation
rates and a quicker depletion of liquid from the groove.

The second trend is the formation of a dryout front, A* = 0, at approximately r* = 0.9. At this
point, the elevated temperature profile was reduced to the uniform profile and a rewet of the groove was
noted. At r* = 1 the liquid has not reached its quasi-steady-state condition. This test validated the code’s
ability to capture a dryout and rewet due solely to external heating.

Test Seven--Transient Body Force, External Heating

This numerical experiment was performed to determine the code’s ability to capture a dryout and
rewet in a groove subject to both transient body forces and external heating; similar to what was
investigated in the physical experiments. The test setup is shown in Figure 19. The heating schedule of
test six was combined with the tilt schedule of test five. The total run time for this experiment was ten
seconds. This was done to compare the results to those of test five.

The results are seen in Figure 20. The same trends noted in Figure 16 are seen here; namely, the
dryout of the groove at approximately * = 0.3 and the rewet following the groove rotation back to level.
The primary difference between these two figures is in the rewet phase. In Figure 16 the rewet is seen
by the rise in A* at x* = 1 between r* = 0.5 and r* = 1. The same region in Figure 20, however, shows
a dryout condition; in fact, at x* = 1, A* is zero at t* = |, compared to A* = 0.045 in Figure 16. This
is due to the elevated temperatures and correspondingly increased evaporation rates.

Test Eight--Increased Frequency

An additional numerical study was performed to demonstrate the ability of the code to model the
liquid flow in a heated capillary structure under a frequency and amplitude greater than those of tests one
through seven. The code was run at the same conditions as numerical experiments one through seven,
but the amplitude was allowed to vary between +0.0524 and -0.0524 radians. Additionally, a frequency
of 1 Hz was used; one order of magnitude greater than the maximum frequency of the first seven
numerical tests. Initial liquid distribution and temperature boundary conditions are shown in Figure 21.

The results of a sixty second run are shown in Figure 22. The sinusoidal motion of the liquid is
evident. The overall volume of liquid in the groove is decreasing with time as evidenced by the maximum
amplitude of the area peaks at x* = 0 and x* = 1 decreasing with time. No dryout is seen in the figure
but this is only because the computer run was stopped before dryout occurred. The code appears to
predict the correct trends in the liquid motion.
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CONCLUSIONS AND RECOMMENDATIONS

A transient, one-dimensional numerical code has been developed which is capable of modeling
the liquid motion in a grooved heat pipe wick structure subject to transient heat loads and body force
effects. Simple numerical tests demonstrated its ability to predict the correct trends in axial variation of
liquid inventory, to include both dryout and rewet, caused by asymmetric heating, transient body forces
or a combination of both. It is recommended that experimental data be generated to compare with the
results from this model to provide validation of the governing equations, simplifying assumptions and
solution methodology.
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SUMMARY

A higher-order finite-difference technique is developed to calculate the developing-flow
field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-
Stokes equations governing the motion of such a flow field are solved by using this new finite-
difference scheme. This new technique can increase the accuracy of the finite-difference
approximation, while also providing the option of using unevenly spaced clustered nodes for
computation such that relatively fine grids can be adopted for regions with large velocity gradients.
The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The
velocity distribution and the surface pressure drop of the developing flow then are calculated and
compared to existing experimental measurements reported in the literature. Computational results
obtained are found to be in good agreement with existing experimental correlations and therefore,
the reliability of the new technique has been successfully tested.

INTRODUCTION

Due to the effect of viscous dissipation, velocity and pressure distributions in fluid flows
normally vary non-uniformly. The flow velocity typically has a large spatial variation near a wall
and a relatively small variation in a region far away from wall surfaces. To calculate flow
characteristics, the classical finite-difference method discretizes the mathematical domain into
uniform-size meshes. In order to obtain accurate results without resolving to using extremely fine
meshes, the physical domain is preferable to be discretized into unenvenly spaced clustered nodes
such that fine meshes can be adopted in regions with large velocity gradients and coarse meshes
can be used in regions with small velocity gradients. As was discussed by Anderson et al (ref. 1),
a physical domain discretized by using unevenly spaced clustered nodes can be transformed into a
mathematical domain consisting of evenly spaced nodes by using the method of coordinate
transformation such that the classical finite-difference technique can be applied. However, to find a
proper mathematical function to transform coordinates of a physical domain discretized by using
arbitrarily clustered nodes into new coordinates for a mathematical domain with uniformly spaced
meshes is practically infeasible because of the complex nature of this type of transformation. In

107

PRECEDING PAGE BLANK NOT FI
HMED pace 199w inaLLe Buank



addition,transformed governing equations for the mathematical domain can become highly
transcendental because of the nonlinear behavior of fluid flows. Hence, it is highly desirable to
develop a finite-difference technique which can be applied directly to a mathematical domain
discretized by using arbitrarily spaced clustered nodes such that the transformation of governing
equations can be avoided. '

Several existing methods which utilize the classical finite-difference formulation to solve
partial differential equations have been major tools in computational fluid mechanics. The
conventional explicit method, Crank-Nicholson method, and the Box method of Keller (refs. 2 to
4) are major finite-difference techniques that have been widely used in computational fluid
mechanics. However, theses methods are only second-order accurate and are not appropriate to be
applied to cases with unevenly spaced clustered nodes without using the coordinate transformation
technique. In view of these shortcomings, the objective of this work is to develop a fourth-order
explicit finite-difference scheme such that clustered nodes can be directly used in a mathematical
domain. In addition to having the capability of allowing untransformed governing equations be
applied directly to unevenly spaced clustered nodes in a physical domain, this new technique
determines the first four derivatives of dependent variables with respect to any independent variable
consistently to the fourth-order accuracy. Therefore, it should be more accurate than the classical
second-order finite difference method.

In order to test the reliability of the new explicit finite-difference technique, it is used to
solve the flow-development problems of fluid flows in the entrance region of a circular tube as well
as in the leading-edge region between parallel plates. The well known solutions of Couette flow
and of plane Poiseuille flow are applicable to the fully developed regions of these problems. As
were described by Sparrow et al (ref. 5), several analytical techniques such as linearized methods
and boundary-layer approaches have also been developed to approximately model flows in the
entrance regions of these two problems. Sparrow et al (ref. 5) used a linearized method to solve
the developing flow problems for both cases. In addition, Bodoia and Osterle (ref. 6) also utilized
the classical finite-difference method to solve these flow-development problems. However, they
applied Prandtl's momentum equation for the boundary layer instead of Navier-Stokes equations to
these problems. In order to properly model the actual developing process, the present analysis
applies Navier-Stokes equations to the entire domain and utilizes an iterative sweeping technique to
calculate nonlinear terms. Therfore, the present mathematical approach is different from any
existing analyses.

HIGHER-ORDER FINITE-DIFFERENCE FORMULATION

Five different types of higher-order finite-difference formulations which allow the usage of
clustered nodes can be developed by using Taylor's series expansion of functions up to the fourth-
order accuracy. Nodal intervals for these five types of formulation, namely, the central difference,
the partially forward difference, the fully forward difference, the partially backward difference, and
the fully backward difference, are shown in Figure 1. All five types can be used for different nodes
in the same domain and their selection for each node depends upon the distribution of unknown
dependent variables surrounding the node under consideration. The first, the second, the third, and
the fourth derivatives of a dependent variable with respect to an independent variable evaluated at
this particular node (node i) can be expressed algebraically in terms of the nodal values of the same
dependent variable associated with the five neighboring clustered nodes. The coefficients of these
linear algebraic relationships can be calculated for any values of nodal intervals by solving four
simultaneous linear algebraic equations relating to Taylor's series expansion. As an example,
central-difference relationships for the case with uniform intervals (hy = hp = h3 = hy = h) can be
expressed as
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where u;2, Uu;.1, U;, U;+1 and uj4+2 are values of u evaluated at x;.2, Xi-1, Xj, Xi+1 and X;;2,
respectively.

FORMULATION OF THE PROBLEM

Two physical problems are considered to test the higher-order finite-difference technique.
one is the axisymmetric developing incompressible laminar flow in a circular pipe and the other is
the two-dimensional developing incompressible laminar flow between parallel plates. Flow
velocity and the pressure at the inlet region are assumed to be uniform and the no-slip boundary
conditions are imposed on all wall surfaces. By utilizing a switching constant m for both the two-
dimensional problem (m = 0) and the axisymmetric problem (m = 1), governing equations for both
problems in different regions can be expressed as follows:

(A) General Region of Fluid Flow (0<y*<1)

(1) Continuity Equation

pd%  my’ 9V g

ox® y* oy’ )
(2) Momentum Equations
- - " 2 . - 2«
bu‘gu—+v‘al=-abal+-bia £ +m du +-1—a a2
ox* ay* ox* Regx*2 y'Re dy* Re gy*2 6)
T o LA W g OV
bu* +v* =a2P b° Im -y 4 1
ox* ay* dy* Regx*2 y'Redy® y'Re Re gy+2 )
(B) Centerline Region (y*=0)
(1) Continuity Equation
ou’ ov*
b + (m+1 =0
ox* ) ay* (8)

(2) Momentum Equations
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by 30 9", p2 30 (lem) 3’
ox*  9x" Regyr2  Re g2 )
v'=0 (10)
(C) Wall- ion (y*=1)
(1) No-Slip Conditions
u*=v'=0 )
(2) Momentum Equation
a2 4290 B2 u® m ou’ _1_8 u’ +_b182v‘ m OV
ax oy Re ox*2  y'Re ay " Re oy*2 Regx*2  y'Re dy*
_1_3
y'Re "Re dy*2 (12)
where
as 2= pHU.

Here, x and y are either the Cartesian coordinates in the longitudinal and the transverse directions

for the parallel-plate problem or the cylindrical coordinates in the axial and the radial directions for
the circular-pipe problem. The origins of these coordinate systems are located at the flow inlets.
The x axis is located either at the centerline of the parallel planes for the two-dimensional problem
or at the center of the pipe for the axisymmetric problem. The flow domain in the x and y directions
are denoted as L and H, respectively. Hence, H represents either the half distance between two
parallel planes or the radius of the circular pipe. The axial velocity and the pressure at the inlet are
specified as U. and p., respectively. Velocity components in the x and the y directions as well as
the pressure, tne density, and the viscosity of the flow are denoted as u, v, p, P, and H,
respectively. The x-momentum equation applied at x = 0 (centerline region) is derived by applying
L'Hospital rule to the Navier-Stokes equation. In addition, equation (12) is obtained by combining
both the x and the y components of the momentum equations such that the number of unknowns
can be identical to the number of equations at each surface node.

Governing equations for the entire domain, equations (5-12), are discretized in the y*
direction by using the present higher-order finite-difference technique to adapt to unevenly spaced
clustered nodes. However, they are discretized in the x* direction by applying the classical finite-
difference formulation to evenly spaced nodes such that an iterative sweeping technique can be
used to calculate nonlinear terms. The initial value of a nonlinear term associated with a given node
can be estimted by using values of terms evaluated at upstream nodes at the same y* location such
that governing equations can be solved line by line from the upstream to the downstream by using
the classical backward difference formulation in the x* direction. To reduce the inaccuracy due to
this approximation, results calculated for each line are iterated to a convergent value before the
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next marching sequence of the sweeping process is undertaken. To start the process, the first two
lines have to be solved simultaneously by using the central difference for the first line and the
backward difference for the second line in the x* direction. For all subsequent sweeping
calculations, only one line of nodes are involved in the process.

NUMERICAL RESULTS

The normalized domains for both the parallel-plate and the circular pipe problems are
discretized by dividing the domain in the x* direction into 30 evenly spaced intervals and the
domain in the y* direction into 20 uneven clustered intervals. These unevenly speced intervals in
the y* direction vary from 0.0025 at the wall to 0.1 at the centerline. Table 1 compares non-
dimensional axial velocities of the circular pipe between those obtained by the present analysis and
those measured by Nikuradse (ref. 7) as well as those calculated by Sparrow et al (ref. 5). Table 2
shows the comparison of non-dimensional longitudinal velocities for the parallel-plate problem
between those calculated by using the present technique and those determined by Sparrow et al as
well as by Bodia and Osterle (refs. 5 and 6). Table 3 summarizes the comparison of the non-

2
dimensional centerline pressure drop, [2(p. - PV (PUL, of the pipe flow between those calculated
by using the present analysis and the Schiller's experimental correlation reported by Prandtl and
Tietjens (ref. 7). Results obtained by using the present technique are shown to be in good
agreement with those determined by existing techniques. The non-dimensional entrance length of
the circular pipe estimated by locating the cross section with its centerline velocity being 99% of the
fully developed centerline velocity is found to be approximately equal to x/(DRep) = 0.0593 or
x/(HRe) = 0.237 which is roughly consistent with the value of x/(DRep) = 0.05 suggested by
tI_?ays (ref. 8) or the value of x/(HRe) = 0.26 reported by Prandtl and Tietjens (ref. 7) for pipe
OWws.

CONCLUSIONS

A higher-order finite-difference technique which allows the usage of clustered nodes has
been successfully developed. Numerical results obtained in the present analysis have also verified
the reliability of this technique. Therefore, it can be a very useful tool in computational fluid
mechanics because of its accuracy and the need to use unevenly spaced clustered nodes for
modeling fluid flows.
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(a) Fully Forward Difference
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(b) Partially Forward Difference
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Figure 1. Higher-order finite-difference nodes
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TABLE 1 - Comparison of the non-dimensional axial velocity (u/U..) of pipe flows

Present Analysis Nikuradse's Expermental Analysis by Sparrow et al
Measurement (ref.7) (ref. 5)
~X_ yH yH yH

00| 04 ) 08 ] 09 | 00} 04 | 08 | 0.9 00 { 04 | 08 | 0.9

0.01 134132 1099] 063 | 130 132 | 112 | 071 | 1.32 | 1.31 | 1.00 | 0.59
0.02 144 | 141 |1 092 | 053 | 143 | 1.44 | 095 | 0.58 | 1.44 | 1.42 | 0.92 | 0.51
0.03 1.53 | 1.48 1 0.87 | 048 | 1.53 } 1.53 | 0.89 | 0.52 | 1.53 | 1.49 | 0.87 | 0.47
0.04 160 152 |1 084046 | 1.60 | 1.58 | 0.86 | 0.50 | 1.60 | 1.53 | 0.84 | 0.45
0.05 166 | 1.56 | 0.81 | 044 | 1.66 | 1.60 | 0.83 | 0.48 | 1.66 | 1.57 | 0.81 | 0.44
0.10 1.84 1 163 1076 | 040 | 1.83 | 1.65 | 0.77 | 0.41 | 1.85 | 1.63 | 0.76 | 0.40
0.20 197 {167 [ 073 038 | 197 | 1.67 | 072 | 0.38 | 1.97 | 1.67 | 0.72 | 0.38

TABLE 2 - Comparison of the non-dimensional axial velocity (u/U..) of flows between parallel plates

Present Analysis Finite-Difference Calculation | Calculation by Sparrow et al
by Bodia and Osterle (ref. 6) (ref. 5)
X yH yH yH

HRe

00 | 0.5 07 § 09 | 00 | 05 | 0.7 | 09 00 | 05 }| 07 | 09

0.01 120 | 1.15 | 1.00 | 050 | 1.16 | 1.16 | 1.05 | 0.50 | 1.18 | 1.16 | 1.03 | 0.48
0.02 125 1.18 | 096 | 042 | 1.22 | 1.18 | 099 | 0.41 | 1.24 | 1.18 | 0.96 | 0.40
0.03 1.30 |1 1.18 | 091 | 037 | 1.27 | 1.18 | 093 | 0.37 | 1.29 | 1.18 | 0.91 | 0.37
0.04 1.33 1 1.18 1 0.88 | 035 | 1.31 | 1.18 | 0.89 | 0.35 | 1.33 | 1.17 | 0.88 | 0.35
0.05 136 | 1.17 1 086 | 034 | 1.34| 1.17 | 086 | 0.33 | 1.36 | 1.16 | 0.86 | 0.33
0.10 144 | 1.15 1080 | 030 | 1.44 | 1.14 | 080 | 0.30 | 1.44 | 1.14 | 0.80 | 0.30
0.20 149 | 1.13 1 077 1 029 | 1.49 | 1.13 { 077 | 0.29 | 1.49 | 1.13 | 0.77 | 0.29
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TABLE 3 - Comparison of the non-dimensional centerline pressure drop,

2(p.-p)/pU2, of pipe flows.

X _ Present Analysis Schiller's Correlation
HRe (ref. 7)

0.01 0.89 0.66

0.02 1.21 1.03

0.03 1.49 1.27

0.04 1.74 1.48

0.05 1.96 1.80

0.10 2.94 2.68

0.12 3.30 3.18

0.16 3.98 3.70
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ABSTRACT

The view factors which are used in diffuse-gray radiation enclosure calculations are often
computed by approximate numerical integrations. These approximately calculated view factors will
usually not satisfy the important physical constraints of reciprocity and closure. In this paper several
view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares
numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo
investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into
the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-
squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-
flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very
sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares
rectified view factors are very good with an original view-factor matrix computed to only one-digit
accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area
uncertainty in this case study.

INTRODUCTION

It is general knowledge in the radiation heat transfer literature that the view factors in diffuse-
gray radiation enclosure calculations should be computed in such a way that they satisfy the physical
constraints of reciprocity and closure. For systems with a large number of surfaces, the only
practical way to compute the view factors is by approximate numerical integrations. Monte-Carlo
integration is a popular technique which is robust and has the added advantage of providing an
estimate of the uncertainty in each calculation. These approximately computed view factors will only
in the rarest of coincidences satisfy the reciprocity and closure constraints, and artificial means of
enforcement must be adopted.

Most heat transfer textbooks adopt a naive enforcement. Only the view factors above the
diagonal in the view-factor matrix are computed. The view factors below the diagonal are computed
using reciprocity relationships, and the view factors along the diagonal are computed using closure.
This technique is naive because it allows the view factors along the diagonal to be negative. Negative
view factors are of course blatant physical impossibilities. Tsuyuki [1] presents a refined form of the
naive enforcement which avoids negative view factors. van Leersum [2] presents an iterative
approach which enforces closure and reciprocity on an approximate set of view factors and avoids
negative instances.

It is often stated in the radiation heat transfer literature (Brewster [3] for example) that reciproci-
ty and closure are required to avoid ill-conditioned matrixes in the linear equation set that results from
the diffuse-gray enclosure analysis. Taylor et al. (4, 5] have demonstrated that diffuse-gray radiation
enclosure problems can be very sensitive to errors in the view factors even when the coefficient
matrixes are very well-conditioned with condition numbers of order 2 and 3. In their work, they
found that the simultaneous enforcement of reciprocity and closure using the naive algorithm
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described above will greatly reduce this sensitivity. Also, Taylor et al. demonstrated that enforce-
ment of closure and reciprocity reduced the sensitivity of the heat-flux results to uncertainties in the
surface areas.

This paper extends the previous work of Taylor et al. by considering more advanced reciprocity
and closure enforcement algorithms and comparing the propagation of the view-factor errors and
surface-area errors into computed heat-flux results of the diffuse-gray enclosure analysis for the
different methods.

Four view-factor enclosure algorithms are discussed and compared

1) No enforcement--all view factors independently computed.

2) Naive enforcement.

3) van Leersum’s enforcement.

4) Optimal enforcement.
The optimal enforcement algorithm uses a least-squares optimization which finds the minimum root-
sum-square charge in the view factors which will simultaneously enforce reciprocity and closure.
Nonnegativity conditions can also be included in the optimization algorithms.

The technique used for the comparison is a Monte-Carlo uncertainty analysis of a sample
problem which has proven to be hypersensitive to errors in the view factors when reciprocity and
closure are not enforced. The results are the distributions in computed surface heat fluxes for
assumed uncertainty distributions of the original unrectified view factors and for assumed uncertainty
distributions in surface areas.

DIFFUSE-GRAY ENCLOSURE FORMULATION

Radiation exchange between finite diffuse-gray areas which form an enclosure is discussed in
almost all general heat transfer textbooks. Excellent detailed discussions can be found in any thermal
radiation heat transfer textbook (Brewster [3] and Siegel and Howell [6], for example). The basic
restrictions are that each surface have uniform temperature, uniform radiative properties which are
diffuse and gray, and uniform radiosity. Boundary conditions for the k-th surface are expressed by
specifying either the surface heat flux, q, or the surface temperature, t,. Mixed boundary conditions
cause no problem. If all of the surfaces with specified heat flux are considered first as surfaces 1
through M and the surfaces with specified temperatures numbered M + 1 through N, the following
set of linear equations can be obtained for the radiosity values [4,5]

r-{r-pXp'F™D q, = b ¢))

where D, is a diagonal matrix with areas as elements, F is the view factor matrix, D," is a diagonal
matrix with zeros for elements in rows 1 through M and ¢ inrowsk = M + 1 to N, b is a vector

whose first M elements are g, (k = 1,2,--,M) and whose last N-M elements are ekot: k =
M+1,-,N), and q, is the vector of radiosities.
Equation (1) is solved for the radiosities. If the result r is taken to be the vector whose first M

elements are ekat: (k = 1,2,--,M) and whose last N-M elements are q; (k = M+1,-,N), the final
equation is

r=[1-(1-D D 'FTDq, @)
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where D™ is the complement of D} and has ¢ for the first M elements and zeros for the last N-M
elements.
Usually at this stage of the development, the view-factor reciprocity relationship

F'D, = D,F €)

is substituted into equations (1) and (2) to simplify the formulas. However, in this investigation, we
are interested in cases where reciprocity is not strictly enforced. In that case, it is more appropriate
to work with equations (1) and (2).

VIEW-FACTOR RECTIFICATION

Three view-factor rectification schemes are considered: 1) Naive, 2) Leersum’s, and 3) least-
squares optimum. For the least-squares optimum three subsets are considered: 1) unweighted
without nonnegativity, 2) unweighted with nonnegativity, and 3) weighed with nonnegativity. Each of
these procedures is discussed below.

Naive Rectification

For the naive rectification, the view factors above the main diagonal in the view-factor matrix,
F, are retained and all others are discarded. The upper-triangular matrix containing these remaining
view factors is designated as U and its transpose as uT. Equation (3) can then be used to compute
the missing view factors below the diagonal. If the lower-triangular matrix containing the view

factors below the main diagonal calculated by reciprocity is designated Ly;, equation (3) can be
written as

L,=D]'UTD, )

The rectified view-factor matrix excluding the diagonal is obtained by combining the lower- and
upper-triangular matrixes

Fy=L,+U ®)

Next the diagonal elements are computed using the closure relation

N
fai=1-Y Sy ©)

jn
joi

No attempt is made to ensure nonnegative view factors. The physically impossible negative view
factors are naively accepted.

Leersum’s Rectification
van Leersum (1989) has published an iterative scheme which can be considered a refinement of
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the naive rectification. His method spreads the closure adjustments over all of the view factors and
assures nonnegative view factors. His algorithm is given below.
1) For each row in the F, compute a correction factor based on closure

£ m

where m is the number of nonzero view factors in row i.
2) For each nonzero view factor in row i, apply the correction

fu =Sfa*dy k=1, , N ®

If any fy ; < 0, decrease m by the number of negative values and recalculate d; bypassing the
view factors which made the previous ng negative. Repeat this procedure until no negative
view factors are obtained.

3) Enforce reciprocity by computing values for column i

.S
a

»k=1,.,N ®

fw=

4) Repeat this process in turn for each row.
5) Since the enforcement of reciprocity in 3) disturbs the closure forced in 1) and 2), repeat the
entire process iteratively until the values of d, are arbitrarily small.

The step-by-step enforcement of reciprocity in 3) over wrights all of the original view factors
below the main diagonal; therefore, Leersum’s procedure only considers the diagonal and upper
triangular elements in the original view-factor matrix. Also, it is not clear why zero-valued view
factors are considered to be exact and are not allowed to be modified.

Least-Squares Optimum
The least-squares optimization problem can be posed as the quadratic minimization of
N N
= 2
-3 3wl - ) (10
i=1  j=1

subject to the closure and reciprocity equality constraints where the f,;’s are the original approximate-

ly determined view factors, f;:’s are the corrected view factors, and w;;'s are the weights used when

the view factors have unequal uncertainty. The closure and reciprocity constraints are

N
Y fi=Ll i=L . ,N a1)
Jj=1

aajl_aioij=0i=1’N-lsj=i+l,N (12)
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If nonnegativity is desired, the inequality constraints can be applied

f;20 i=1,.,Nj=1.,N (13)

This problem can be readily solved using any number of nonlinear-programming techniques.

However, considerable insight can be gained and a computational formula can be derived if the
problem is viewed from a geometric standpoint. First, the view factors are grouped into a column
vector instead of a matrix. The view-factor matrix is stacked in row-major form; for example, the 2
x 2 view-factor matrix becomes

fu

- Ifll le "’f - f12 v (14)
Ju Jr o
/2]

Closure and reciprocity are enforced by applying the equality constraints (equations 11 and 12) to
form a set of linear equations

R-f=c (15)
The 2 X 2 system would yield, for example
fu
11 0 0 £ 1
00 1 1{[?-]1 (16)
0a -a, 0 I 0
/|

Equation (15) has N(N - 1)/2 degrees of freedom. The Naive rectification is obtained by specifying
the N(N - 1)/2 view factors above the main diagonal and computmg the remainder from equation
(15). However, it is more desirable to use all of the N? view factors.

The solutions of equation (15) can be factored into two orthogonal subspaces--the rowspace and
the nullspace. The rowspace component of the solution is computed using the expression (Strang [7])

Soow = RTIRR) " ¢ (17)

This vector is the particular solution of equation (15) which has the least norm. It is a unique and
necessary component of all solutions of equation (15). The other component of the solution (f - frow)
should lie in the nullspace of the reciprocity and closure matrix R and can be expressed as a linear
combination of basis vectors for the nullspace

f = Jrow) = Nyx (18)
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where Ny, is the matrix whose columns form that basis and x contains the weights of the linear
combination. However, if there are errors in the computed view factors, f, equations (18) will not be
consistent, and we must resort to the least-squares solution [7]

Tar\-l 5T
x = (NJN)" N - fo) (19)
The projection of (f - f,,,,) onto the nullspace, then, is the desired set of corrected view factors
Tar\-1arT
foar = N(NY N NJ(f - £ (20)
and the least-squares optimum set of view factors is

fo =fnw +fuuﬂ ) (21)

When the data are not all equally reliable (usually the case for view factors), weighted least
squares should be used for the solution of equations (18) [7]

w - -1 -
Soua = NN VNNV - f ) (22)
where V is the covariance matrix, and
Jort = Jrow * fau (23)

The view-factor rectifications computed using equations (21) and (23) do not enforce nonnegativ-
ity.

The least-squares optimum view-factor rectification obtained through equations (21) and (23) are
exactly the same as those which would be obtained by solving the quadric minimization problem in
equations (10), (11), and (12) without considering the nonnegativity constraints.

As discussed before the view factors must be nonnegative to be physically realistic; a negative
view factor is meaningless. It is our opinion and experience that allowing slightly negative values in
the rectified view-factor matrix does not seriously impact the fidelity of the heat transfer results.
Certainly, the strict enforcement of reciprocity and closure has had a much stronger impact on our
results.

A two-step procedure which is easy to implement and closely approximates the results of the
nonlinear-programming solution with the nonnegativity constraints is to apply equations (21) or (23)
and to assume that the equality in equations (13) would be enforced on all negative values. These
view factors are set to zero and removed from consideration obtaining a reduced order problem, and
the process is then repeated with the reduced set of data. This procedure has proven to give exactly
the same set of rectified view factors as the nonlinear-programming solution in about 90% of the
cases and only slightly different ones in the other 10% of the cases.

The rectification algorithm for the least-squares projection is as follows

1) Construct the closure and reciprocity matrix R.

2) Compute the row space component f_ using equation (17).

3) Construct the nullspace matrix N. (This can be constructed using standard routines).

4) Compute the nullspace ieast-squares projection using equation (20) or equation (22) for the
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weighted case.
5) Compute the optimum rectified view factors using equation (21) or (23). View factors t'opt

or f,';, now satisfy reciprocity and closure.

6) If nonnegativity is enforced, search fopt or f,';, for negative entries, and set these to zero.

7) Remove all zero view factors from consideration. Remove the columns of matrix R
corresponding to each diagonal zero element. For each off-diagonal zero reciprocal pair,
remove the corresponding columns and reciprocity rows from the matrix R. The process is
run a second time starting with step 2 and the reduced set of original view factors.

All of the rectification algorithms presented herein apply reciprocity using the best estimates of
the areas in equation (15) as if the areas were known exactly. This is usually not a serious deficiency
since the areas can usually be determined with low uncertainty. The authors are currently exploring
procedures to properly weight the rectification procedure to account for area variance.

NUMERICAL EXAMPLES

The following problem from the heat transfer text by Incropera and Dewitt [8] is used as a basis

of comparison of the different techniques in this paper.

13.62 A room (Figure 1) is represented by the following enclosure, where the ceiling (1) has
an emissivity of 0.8 and is maintained at 40°C by embedded electrical heating ele-
ments. Heaters are also used to maintain the floor (2) of emissivity 0.9 at 50°C. The
right wall (3) of emissivity 0.7 reaches a temperature of 15°C on a cold, winter day.
The left wall (4) and end walls (SA, SB) are very well insulated. To simplify the
analysis, treat the two end walls as a single surface (5). Assuming the surfaces are
diffuse-gray, find the net radiation heat transfer from each surface.

______________

Figure 1. Schematic of a Room for the Example Problem.

This problem was the genesis of our interest in the subject of view-factor sensitivity and rectification.
This problem was assigned in the second heat transfer course at Mississippi State University during
the Fall 1992 term. Two students, Miguel and Simon, ignored the simplification and worked the
problem as a six-sided enclosure. Miguel computed his view factors to four-digit accuracy and Simon
to two-digit accuracy; they got radically different answers for the heat fluxes. An analysis of this
problem and the cause for this hypersensivity are discussed in a previous publication (Taylor et al.

[4D).
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The view-factor matrix computed to four-digit accuracy is

0.0 0394 0.1921 0.1921 0.1109 0.1109]
0394 0.0 0.1921 0.1921 0.1109 0.1109
P 0.2881 0.2881 0.0 0.196 0.1139 0.1139 24)
0.2881 0.2881 0.196 0.0 0.1139 0.1139
0.2774 0.2774 0.1898 0.1898 0.0 0.066

02774 0.2774 0.1898 0.1898 0.066 0.0 |

Seven different numerical experiments have been performed. In each case, the starting point was
the view-factor matrix listed above. Random errors were then introduced by sampling a random-
number generator which produced normally distributed values. The difference in each experiment
resulted from the way that the variance of these random errors was assigned to the view factors. A
thousand view-factor trials were conducted for each case. This was followed by a thousand trials
where the areas were varied randomly. In all of the following, covariance terms are assumed to be
negligible.

Equal Variance

The first numerical experiment considered the view factors to have equal variance with a view-
factor standard deviation of 0.01 and the areas to be fixed. Table 1 gives mean values of the heat
flux for several of the rectification schemes. Since the variances were all equal and the covariances
were assumed to be zero, the weighted least-squares optimum scheme and the unweighted schemes
are identical. The exact solution is computed using the view factors in equation (24) directly. Table
2 shows the standard deviations for the heat flux calculations and the root-mean-square average
standard deviation for each treatment.

Table 1. Mean Heat-Flux Values for Equal View-Factor Variance Case.

Least-Squares

Surface Not N.L.P. No Recti-
Nonneg. Nonneg. Nonneg. Leersum Naive fication Exact
1 -3.6273 -3.6030 -3.6036 -3.6231 -3.6570 -3.9179 -3.6891
2 83.9532 83.7224 83.7249 83.7249 83.9429 83.9205 83.8721
3 -120.4888 -120.1792 -120.1820 -120.4798 -120.3951 -120.3969 -120.5353

Table 2. Standard Deviations in Heat Flux for Equal View-Factor Variance Case.

Least-Squares

Surface Not N.L.P. No Recti-
Nonneg. Nonneg. Nonneg. Leersum Naive fication
1 0.4374 0.3449 0.3447 0.6364 1.0005 10.2714
2 0.5776 0.4394 0.4398 0.8416 1.5774 11.8809
3 0.7272 0.5138 0.5148 0.9571 2.2777 12.3575
rms-avg 0.5927 0.4382 0.4383 0.8225 1.7007 11.5379

122



From Table 1, all of the rectification schemes seem to have means which are roughly equal to the
exact solution. Table 2 shows, however, that there is a large difference in the standard deviations of
the calculated heat fluxes. For surface 1, the case of no rectification has a standard deviation which
is almost an order of magnitude larger than the rectified values. Figure 2-shows histograms of
surface-3 heat-flux distributions for each rectification scheme and for no rectification.

The tables and figure reveal that all of the rectifications are effective for this problem. The
nonnegative least-squares procedures are about twice as effective in reducing errors in the heat flux
calculations as Leersum’s rectification which in turn is about twice as effective as the Naive
rectification. Among the least-squares, the nonnegative projection scheme and the nonlinear-
programming scheme yield almost identical results as expected, and the least-squares without
nonnegativity has very slightly larger errors in heat flux than its nonnegative counter parts.

Next, the view factors were set at the values given in equation (24) and the areas were varied
using a standard deviation of 1% for each area. Table 3 gives the standard deviations for the heat-
flux calculations and the rms average standard deviation for each treatment.

Table 3.  Standard Deviations in Heat Flux for the Area Variance Case with Equal View-Factor

Variance.
_Least-Squares
Surface Not Nonneg.  Nonneg. Leersum  Naive No Rectification
1 0.4414 0.5132 0.4601 0.2285 4.641
2 0.5281 0.4678 0.4225 0.4928 4.377
3 0.3211 0.3334 0.4915 0.8307 4.461
rms-avg 0.4385 0.4447 0.4586 0.5730 4.794

The table shows that with no rectification the area uncertainties result in considerable uncertainties in
the heat fluxes. However, when the view factors were rectified by enforcing closure and reciprocity
these uncertainties in heat flux are reduced by an order of magnitude. All of the algorithms give
about the same decrease in the sensitivity to area uncertainty for this case study.

Unequal Variance

Six cases were considered which contained unequal variance: 1) diagonal-dominated, 2) counter-
diagonal-dominated, 3) row-dominated, 4) column-dominated, 5) upper-triangle-dominated, and 6)
random variances. Depending on the location of the uncertainties in the view-factor matrix, the
relative success of the rectification schemes with respect to the sensitivity to view-factor uncertainty is
vastly different from that seen for equal variance.

For the diagonal-dominated case-study the view factors along the main diagonal are considered to
have standard deviations which are 100 times as large as the off-diagonal view factors. The standard-
deviation matrix corresponding to the view-factor matrix is
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Tables 4 and 5 show the mean and standard deviations of the heat fluxes for 1000 trials where the
view factors in equation (24) were perturbed by values from a gaussian random number generator
with standard deviations given by equation (25).

Table 4. Mean Heat-Flux Values for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum Naive Exact

1 -3.4722 -3.6263 -3.4719 -3.6264 -3.6891
82.1136 83.8987 83.9797 83.9417 83.9417
3 -117.9622 -120.4087 -120.7616 -120.4729 -120.5353

Table 5. Standard Deviations in Heat Flux for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative
Least-Squares
Surface Unweighted Weighted Leersum Naive
1 1.7256 0.0468 3.5462 0.1029
2 2.3167 0.0623 5.1518 0.1584
3 3.3123 0.0912 6.4956 0.2284
rms-avg 2.5374 0.0693 5.2061 0.1711

The rectification schemes are the unweighted and weighted nonnegative least-squares projection
methods, Leersum’s method, and the Naive method. Figure 3 shows histograms for the heat-flux
distributions for surface 3.

For this case study, Leersum’s rectification is seen to be the least effective at reducing errors in
the heat flux. The unweighted nonnegative least-squares projection is about twice as effective as
Leersum’s scheme, but the weighted nonnegative least-squares projection is an order of magnitude
more effective. For this case, the Naive rectification is almost as good as the weighted least-squares
projection.

Recall that the Naive rectification scheme lumps all of the corrections into the diagonal elements
for closure enforcement while Leersum’s scheme evenly distributes the corrections over all of the
nonzero values. Therefore, when the view factor variance is mostly along the diagonal, we expect
the Naive scheme to perform well and Leersum’s to not perform well. When the variances are all
equal, Leersum’s is expected to perform well, as it did in the previous case study.
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Figure 3. Histograms of Surface-3 Heat Flux [watts/m2] for the Diagonal-Dominated Case.

Figure 3 shows that there is a considerable skew to the heat flux distributions for the nonnegative
least-squares cases. It is believed that this is caused by the nonnegativity constraints. The diagonal
elements of the view-factor matrix have nominal values which are zero; therefore, the Monte-Carlo
procedure will produce many negative diagonal view factors that are then set to zero.

For the area uncertainties, a random perturbation is added to the view-factor matrix using a
gaussian random-number generator with the standard deviations given above. The F-matrix is then
frozen and the Monte-Carlo analysis is performed for the area uncertainties using a gaussian random-
number generator and area standard deviations equal to 1% of each area. Table 6 shows the standard
deviations for the resulting heat-flux calculations.
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Table 6. Standard Deviations in Heat Flux for Area Variance with Diagonal-Dominated View-Factor

Error.
Nonnegative
Least-Squares
Surface Unweighted Weighted Leersum Naive
1 0.4462 0.3718 0.4197 0.2298
2 0.5079 0.5679 0.3978 0.4840
3 0.3160 0.4742 0.5208 0.8534
rms-avg 0.4309 0.4781 0.4493 0.5818

As seen above, all of the rectification schemes have about the same effect on sensitivity to area
uncertainty.

The same procedure is followed for the other unequal variance case studies. For all of the cases
with regional dominance, the base view-factor standard deviation is 0.001, and the value in the
dominate region is 0.1. For the counter-diagonal-dominated case, the larger values of standard
deviation are obviously along the counter diagonal. For the row-dominated and column-dominated
cases, the larger values are on the second row and second column respectively. For the upper-
triangle-dominated case, the six elements in the upper-right corner have the larger values. For the
random-variance case, the standard deviations were assigned randomly in the range 0-0.1.

Table 7 shows the mean heat flux values, and Table 8 shows the standard deviations of the heat
fluxes for the various 1000 trial Monte-Carlo studies. The tables reveal that the weighted nonnegative

Table 7. Mean Heat-Flux Values for the Other Unequal View-Factor Variance Cases.

Nonnegative

—Least-Squares
Surface Unweighted Weighted Leersum Naive Exact

Counter-Diagonal-Dominated View-Factor Variance

1 -3.5645 -3.6229 -3.4449 -3.1886 -3.6891

2 82.2329 83.9206 83.0833 83.8364 83.8721
3 -119.5026 -120.4466 -120.4577 -120.4717 -120.5353

Row-Dominated View-Factor Variance

1 -2.7005 -3.6096 -2.6789 -1.7829 -3.6891

2 82.0741 83.9014 81.9244 79.4481 83.8721
3 -119.0604 -120.4378 -118.8689 -116.4979 -120.5353

Column-Dominated View-Factor Variance

1 -2.6462 -3.6033 -3.7737 -3.5184 -3.6891

81.8186 83.8880 83.7971 83.8305 83.8721

3 -118.7586 -120.4271 -120.0350 -120.4682 -120.5353

Upper-Triangle-Dominated View-Factor Variance
1 -3.5754 -3.6222 -3.3351 -3.3087 -3.6891
2 83.6157 83.9198 82.6190 80.2599 83.8721
3 -120.0605 -120.4450 -118.9259 -115.4267 -120.5353
Random View-Factor Variance

1 -3.2880 -3.2593 -3.3021 -2.0925 -3.6891
2 82.4014 82.7955 82.8567 80.3335 83.8721
3 -118.6701 -119.3044 -119.3318 -117.3613 -120.5353
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least-squares projection scheme is vastly superior to the others. Overall its mean heat fluxes most
closely agree with the exact values, and with the exception of the random-variance case, its standard
deviation is one to four orders of magnitude smaller than those for the other schemes. For the
random-variance case, the weighted least-squares scheme gives the best results, but the unweighted
least-squares and Leersum’s schemes also give good results since the uncertainties are more-or-less
evenly distributed.

For some cases, the naive rectification scheme fails completely. Table 9 gives the range of
computed heat fluxes for the naive rectification with the upper-triangle-dominated view-factor
uncertainties. Clearly, any single heat-flux computation from this set is meaningless.

It should be noted that this is a terribly damaged view-factor matrix. For this case, the 95%-
confidence uncertainty in view factor is approximately 0.1, or the view factors are considered to have
approximately 1 digit accuracy. This would correspond to very crudely computed view factors.
However, properly rectified cases yield very meaningful heat flux computations.

Table 10 gives the rms averaged heat flux standard deviations for the area uncertainty Monte-
Carlo analysis. As seen before, all of the rectification schemes seem equally good at reducing the
sensitivity of the heat flux calculations to the uncertainties in the areas for this case study.

Table 8. Standard Deviations in Heat Flux for the Other Unequal View-Factor Variance Cases.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum  Naive

Counter-Diagonal-Dominated View-Factor Variance

1 0.5277 0.0368 1.4061 3.4348

2 0.6197 0.0460 2.0133 5.2123

3 0.8957 0.0563 1.6163 6.2030
rms-avg 0.6988 0.0470 1.6973 5.0810

Row-Dominated View-Factor Variance

1 1.7794 0.0477 3.6299 5.4372

2 2.7123 0.0630 7.0196 16.1912

3 2.5028 0.0618 5.8428 19.2367
rms-avg 2.3655 0.0579 5.6742 14.8523

Column-Dominated View-Factor Variance

1 1.9819 0.0550 3.9047 5.1064
2 3.5176 0.0819 4.8266 5.2548
3 3.4125 0.0701 3.9496 0.3175
rms-avg 3.0521 0.0699 4.2482 4.2343
Upper-Triangle-Dominated View-Factor Variance
1 0.2454 0.0353 2.0937 11.0725
2 0.3273 0.0438 1.9262 22.9427
3 0.4017 0.0535 2.2979 43.0558
rms-avg 0.3310 0.0448 2.1114 28.8835
Random View-Factor Variance
1 2.6444 2.0461 4.7752 14.7834
2 2.6682 2.0091 6.1736 17.8497
3 2.4439 1.7696 5.3161 15.3694
rms-avg 2.5875 1.9454 5.4521 16.0560
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Table 9. Range of Naive Heat-Flux Values for the Upper-Triangle-Dominated Variance Case.

Surface 1 2 3
max 38.9123 106.9031 991.5615
mean -3.3087 80.2599 -115.4267
min -281.7724 -389.7757 -205.6421

Table 10. Root-Mean-Square Averaged Standard Deviations in Heat Flux for Area Variance Cases
with Other Unequal View-Factor Variance.

Nonnegative

—— Least-Squares
View-Factor Variance Case Unweighted Weighted Leersum Naive
Counter-Diagonal 0.4397 0.4395 0.4605 0.5556
Row-Dominated 0.3916 0.4721 0.3570 0.4075
Column-Dominated 0.4071 0.4461 0.4417 0.5859
Upper-Triangle 0.4386 0.4432 0.4748 0.5556
Random 0.4243 0.4565 0.4355 0.5734

CONCLUSIONS

Several view-factor rectification schemes have been compared. Figure 4 summarizes the rms-
averaged standard deviation results for heat flux when view-factor uncertainty is considered. The
Naive scheme, where all of the corrections are placed in the diagonal elements of the view-factor
matrix, has proven to be erratic and sometimes results in meaningless calculations. Leersum’s
iterative scheme is also erratic but, on average gives considerably better results than the Naive
scheme. Leersum’s scheme is most viable when the view factors have equal variance. The
unweighted version of the nonnegative least-squares projection scheme is better behaved than either
the Naive or Leersum’s scheme; however, when the view-factor variance is not equally distributed,
the unweighted nonnegative least-squares projection is consistently superior for all cases. In the cases
where the variances were not equally distributed the weighted nonnegative least-squares projection
gives heat-flux results which were orders of magnitude better than the other schemes.

The Naive scheme is not recommended. If no knowledge on the relative sizes of the view-factor
variances is available, either Leersum’s scheme or the unweighted nonnegative least-squares
projection will take fairly crudely calculated view factors and compute meaningful heat transfer
resuits. The least-squares projection is recommended since the computational tasks are roughly
equivalent and it is about twice as effective. If information is available on the relative variance of the
view factors (which is always the case for Monte-Carlo integrations), the weighted nonnegative least-
squares projection should be used.

The weighted nonnegative least-squares projection can be thought of as a numerical filter for
noisy view-factor data. In the examples given here, very good heat transfer calculations were made
for cases with very crudely defined view-factor data (roughly 1 digit accuracy). View-factor
calculations are the most computationally intensive part of many radiation enclosure problems. There
is the possibility of considerable improvement in computational efficiency by combining this excellent
filter with relatively crude computations of the view factor values. To properly make such a
compromise, sensitivity estimates [5] of the heat transfer calculations would be required.
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Figure 4. Summary of Surface-3 Standard Deviation Results for View-Factor Variance.

All of the schemes were roughly equal with regards to the propagation of uncertainties in the
surface areas. When the view factors were rectified in this case study, the heat flux uncertainties
were roughly an order of magnitude less than the case when no rectification was applied. The proper
weighting procedure for the enforcement of reciprocity with uncertain areas is a topic of current
research.
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SUMMARY

Aerospace electronic boards require special attention to thermal management due
to constraints such as their need to be light, small, and maintain high power densities. Also,
cooling is mainly through conductive and radiative modes with minor or negligible
convective cooling. Due to these particular requirements, thermal design has become an
integrated part of the electronic design process in order to avoid expensive repeat
prototyping and to ensure high reliability.

To achieve high speed simulations, the BETAsoft code uses semi-empirical
formulations and an advanced finite difference scheme that incorporates local adaptive
grids. Detailed conduction, convection and radiation heat transfer is considered. Various
benchmark verifications of the software simulation compared to infrared images typically
prove to be within 10% of each other.

The thermal analysis of a sample avionic card in a natural convection environment
is shown. Then, the individual effects of attaching metal screws to the casing, increasing
radiative emissivities of the casing, increasing the conductance of the wedge lock, adding
an aluminum core to the board, adding metal strips in board layers, inserting conduction
pads under components, and adding heat sinks to components are demonstrated.

INTRODUCTION

With the trend of higher clock speeds and decreasing package sizes, the power
density of electronic boards have increased continuously in the last two decades (1). Higher
board power densities lead to higher component junction temperatures. Since the failure
rates of junctions generally increase exponentially with their temperatures (2), thermal
control thus becomes critical in achieving acceptable product reliability. Presently, more
than half of electronic failures are due to thermal problems. Thermal management has
has become an ever increasing concern of today's electronic designs.

Compared to the majority of electronic applications, those of the aerospace industry
present unique thermal concerns due to their environment and resulting modes of heat
transfer. Lower pressure leads to decreased convective flow and an increased need to
effectively use conductive and radiative cooling. Furthermore, testing aerospace boards is
usually difficult in terms of simulating the environment at reduced atmospheric pressures.

Due to the advances in numerical computations, thermal analysis software has
become the best solution for electronic designers. Thermal software lowers design cost by
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reducing the load of laborious prototyping tests. The thermal analysis results also provide
far more detailed technical information than the tests which are limited by the
instrumentation. Typically, software results include a temperature map and gradient of the
entire board as well as the individual casing and junction temperatures of every part. Due
to the speed software simulation, a significant amount of time is saved. This allows for
further examination of alternatives and shortens the time to market. As a result, thermal
analysis software is generally regarded as an integrated CAE tool with electronic CAD
software today.

Among the thermal analysis tools, two types of software are available: general and
specialized. Any general purposed heat transfer or CFD program can be used to simulate
the thermal performance of electronic boards. This general software, however, suffers on
the aspect of user friendliness. It is time consuming to set up a board or move a
component using any general purpose finite element program. This, in turn, prohibits the
effective analysis of a real board containing more than 20 components.

Specialized thermal software imports the board layout directly from CAD systems.
User-friendly menus to allow for modifications of the board with only a couple key strokes
and for quick and easy variation of the thermal environment. This allows for the setup time
to shorten to a couple hours and with alternative results obtained in a only few minutes.
Since thermal design generally requires an iterative process, this specialized software is the
standard tool used in electronic designs today.

The objective of this paper is to describe a unique semi-empirical approach to
thermal analysis which provides fast computation and high accuracy. This thermal software,
BETAsoft-Board, is used to illustrate the applications of a typical aerospace board in terms
of various parametric effects of design solutions and alternatives. Comparative advantages
of these alternatives are discussed and the results of their combined used as design solutions
are presented.

NUMERICAL MODELING

A straight forward approach of thermal analysis is to use the finite element scheme
for conduction and the Navier-Stokes equations for convection. Although this is the
approach used by many heat transfer programs, the obvious draw-back is the large memory
requirement and substantial computational time involved. This excludes the use of PCs for
sophisticated thermal designs.

A unique approach developed by Dynamic Soft Analysis, Inc. is the use of a modified
finite difference scheme for conduction and semi-empirical based equations for convection.
Significant effort has been devoted to this development. The end result is a fast yet
accurate thermal analysis. Since the equations involved are numerous, only a brief summary
of the modeling approach is described below.

Conduction:
Standard heat conduction equations are used in the computation (3). Finite
difference grids with local properties are applied to the board. Along the board edges, heat

transfer to wedge locks is implemented. Up to three physical board layers can be
considered. The components interact with the board through the individual leads as well
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as through the gap beneath a component. The board layers can be nonhomogeneous by
specifying local regions of varying volumetric fractions of metal. Furthermore, the
conductivities along the x and y directions of the board can be altered in localized regions
of each layer. -

Since the components can be set on either side and any location on the board, the
modeling of conduction to the board is implemented through the use of locally refined
adaptive grids. Only at the locations where grid refinement is needed, further grids are
automatically generated. This scheme enhances the accuracy significantly while only slightly
increasing the computational burden.

Convection:

Three dimensional flow effects and thermal fields are considered in the convective
modeling. Although the experimental results and data correlations are well reported for
2 dimensional configurations (4), the consideration of detailed three dimensional effects
takes substantial effort. Vast amounts of literature on various data and correlations were
reviewed. It was found that frequent discrepancies appeared. As a result, a large amount
of in-house wind tunnel tests using various boards from regular arrays to irregular arrays
of components were conducted. Infrared results of components and boards were obtained
to check with the existing correlations and to create a new set of correlations. To cover a
large number of variations, more than 40 equations are employed.

For each component, the different heat transfer from each exposed side is calculated
based upon its local flow and thermal environment. The convective heat loss from the
leads is modelled. The effects of flow diversion, thermal boundary layer, heat sink fins, and
adjacent boards or casings are also considered. Natural convection can be calculated.
When there is forced convection, the combined convection is considered.

Radiation:

Radiation is very important in aerospace applications. The surface emissivities of
individual components and of the boards can be assigned. The radiation between the
components and the board underneath is precisely modeled in the computation. The
radiation between a component and the opposite board is closely simulated. Lastly, the
minor radiative interaction with adjacent components is approximated.

Integration:

Both the geometric configuration and thermal environment of the board are tightly
integrated with other CAD and CAE programs. The BETAsoft-Board program interfaces
with more than 20 different CAD placement programs to transfer the board layout directly
into the board thermal analysis, saving a significant amount of set up time. The thermal
environment of the board can be transferred from the BETAsoft-System program which
determines the incoming air velocity and temperature as well as the spacing and conditions
of adjacent boards. BETAsoft-Board solves for the detailed thermal environment of each
individual component. This information can be transferred to the BETAsoft-Component
program for an in-depth component packaging analysis.

Furthermore, the junction temperatures from the Board thermal analysis interface

135



to popular reliability analysis programs. This later allows for a very accurate reliability
report.

RESULTS AND DISCUSSION

The BETAsoft-Board program has been in existence and under constant
improvement for more than 7 years. Hundreds of leading companies worldwide use
BETAsoft as an integral part of their design process. From the large number of
comparisons with in-house and users' tests, an error range of within 10% has been generally
observed. This includes computer mother boards, military backpacks, avionic boards,
satellite boards, industrial control boards, etc. for a wide range of operational conditions.
A typical infrared comparison is shown in Fig. 1 and data comparison in Table 1.

To illustrate thermal management techniques, an avionic board case is considered.
The board layout has been automatically transferred from PCAD. As shown in Fig. 2, the
transformer has a power of 3 watts; and the components along top edge of board and one
near the bottom middle are 1 watt each. All of the remaining components are low power.

For this case, the environment conditions were an ambient temperature of 30°C and
natural convection at .9 atmospheres of pressure. The objective of the present thermal
design is to make sure all component casing temperatures are under 95°C to achieve the
overall reliability requirements. i

For this board in a natural convective environment, the casing temperatures of the
transformer and 3rd component in at top are 184.6°C and 139.6°C, respectively. The
computation time for this board is only 3 minutes on the PC platform and less than 1
minute on the workstation. The temperature contour is shown in Fig. 3 and the component
temperatures are shown in Fig. 4. Some thermal design considerations to reduce the
component casings in excess of 95°C are exercised in the following parametric studies:

Screws Attached to the Case:

A very common situation is the attachment of the board to the cold casing with
screws. Five screws are used, each has a thermal resistance of 60°C/Watt. The sink
temperature is at 30°C. The resulting temperature of the two components are 172.9 and
133.7°C respectively for the transformer and component CR25.

Surface Emissivities:

Since the board is hot and the case is cool (at 30°C), it is possible that the radiative
heat loss can be increased by changing the inner casing emissivity from 0.05 (a bright metal)
to 0.8 by applying an organic coating. The resulting temperature reduction is from 172.9°C
to 125.0°C for the transformer and from 133.7 to 112.9°C for CR2S.

As expected, surface emissivity plays an important role, especially for a hot board
in a naturally convective environment. Plus, the change from .05 to .8 is a large magnitude
for emissivity.
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Wedge Lock Resistance:

The thermal resistance of the wedge lock can be varied. Changing the thermal
resistance from 1 to .2 (°C inch/Watt) reduces the temperatures- of the transformer from
125.0 to 123.7°C and CR2S from 112.9 to 108.5°C. There are some minor effects but they
are not substantial for this range of resistance. Whether a wedge lock exists or not would

have substantial effects.
Metal Core:

A very common approach is to add a metal core to the board. An aluminum metal
core of .01" thickness has been applied to bring the heat from the hot components to the
wedge lock. The results (with the new wedge lock resistance) show reduction of the
temperatures of the transformer from 123.7 to 93.1°C and CR25 from 108.5 to 75.6°C. This
appears to be a very effective means to cool the board.

Local Metal Strips:

For space applications, the weight of the board is very important. The aluminum
core is effective but adds a lot of weight. An alternative is to use only strips of metal core
to bring heat from the high power components to the wedge lock. The is done as shown
in Fig. 5. The resulting temperature increases slightly from 93.1 to 99.9°C for the
transformer and from 75.6 to 76.9°C for CR25. However, the weight of the strips are only
12% of the metal core.

Conduction pads:

Although the local board temperature has been reduced, the temperature of the hot
components are still much higher than the board. This is because the high thermal
resistance between the component and the board. This usually occurs when the component
leads are few and thin while a gap exists underneath the component. This gap serves as
a thermal resistance. To reduce this resistance, conduction pads (with conductivity .22
W/°C m) have been installed between the high power components and the board.

The resulting temperatures of the transformer and the CR25 are 84.7 and 61.2°C,
respectively. Thus the addition of conduction pads have resulted in a significant
temperature drop.

Heat Sink on Component:

The top row of 1 watt parts and the transformer are now within the desired range.
However, the 1 watt part at the bottom edge is still well above the allowed value. A final
resolution is the addition of a heat sink on top of this hot IC component. Since this part
is located at the lower edge where it would be hard to be cooled with a metal strip to the
top edge, a pin-fin heat sink is added to its top. As indicated by the manufacturer's catalog,
this sink has a thermal resistance, Theta-sa, of value 6 °C/Watt at 3 ft/s air velocity and 3
°C/Watt at 10 ft/s velocity. The resulting temperature of this component is reduced from

107.6 to 69.9°C.
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The overall temperature profile of the board is shown in Fig. 6. The resulting
component temperatures are shown in Fig. 7. There are no parts beyond the desired
values in the component map. The thermal design is now successful.

CONCLUSION

Aerospace electronic boards present special needs for thermal management.
Although "general purpose" heat transfer programs may be used for thermal design, they
typically are not user friendly and efficient since thermal is not their main function.
"Specialized"” thermal analysis software is effective because it is designed exactly for that one
function. Also, the available integration to board layout, system thermal analysis,
component thermal analysis, and reliability analysis software is an important consideration
for concurrent engineering.

An unique approach using finite difference and semi-empirical formulations are
demonstrated through the BETAsoft-Board program. This approach provides a fast
computation while maintaining accurate solutions.

For aerospace thermal designs, the combined use of emissivities, wedge lock
resistance, metal strips, conduction pads etc. allows for an effective thermal control which
leads to high reliability of the products.
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SUMMARY

The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a
comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket en-
gines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates,
chamber pressure, coolant temperature and pressure, dimensions of the engine, materials and
the number of nodes in different parts of the engine. The code allows for temperature variation
in axial, radial and circumferential directions. By implementing an iterative scheme, it pro-
vides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and
transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber.
This feature allows the user to incorporate a non-equilibrium model or an energy release model
for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and
directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer
module for the hot-gas-side heat flux calculations.

INTRODUCTION

Thermal analysis is an essential and integral part in the design of rocket engines. The
need for thermal analysis is especially important in the reusable engines where an effective
and efficient cooling system becomes a crucial factor in extending the engine life. In the
new high pressure engines, such as chemical transfer vehicle engines, hot-gas temperature is
very high (can reach 7000R at the throat). It is therefore essential to be able to estimate
the wall temperature and ensure that the material can withstand such high temperature.
Furthermore, an accurate thermal model enables an engine designer to modify the cooling
channel configuration for the maximum cooling at high temperature areas.

The thermal phenomena in rocket engines involve interactions among a number of processes.
including, combustion in the thrust chamber, expansion of hot-gases through the nozzle, heat
transfer from hot-gases to the nozzle wall via convection and radiation, conduction in the
wall, and convection to the cooling channel. Further complexities of the thermal analysis
in rocket engines are due to three-dimensional geometry, coolant and hot gas heat transfer
coefficient dependence on the pressure and wall temperature, unknown coolant pressure drop
and properties, axial conduction of heat within the wall. and radiative heat transfer between
gases and surfaces of the engine. A comprehensive thermal model must account for all of these
items.

RTE [1] is a comprehensive rocket thermal analysis code that uses a number of existing
codes and allows interaction among them via some iterative procedures. The code is based
on the geometry of a typical regeneratively-cooled engine similar to that shown in Figure

1. It uses CET (Chemical Equilibrium with Transport Properties) [2] and GASP [3] for the
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evaluation of hot-gas and coolant properties. The inputs to this code consist of the composition
of fuel/oxidant mixtures and flow rates, chamber pressure. coolant entrance temperature and
pressure, dimensions of the engine and materials in different parts of the engine, as well as
the mesh generation data. This program allows temperature variations in axial, radial and
circumferential directions, and by implementing an iterative scheme it provides temperature
distributions, rates of heat transfer, and hot-gas and coolant thermal and transport properties.
The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the
user to incorporate a nonequilibrium model or an energy release model for the hot-gas-side. The
mixture ratio along the thrust chamber is calculated using ROCCID [4] (ROCket Combustor
Interactive Design and Analysis Computer Program). ROCCID has been modified to take RTE
input and make the mixture ratio variable along the thrust chamber. The user has the option
of bypassing the hot-gas-side calculations and directly inputting gas side fluxes. This feature
is used to link RTE to a boundary layer program for the hot-gas-side heat flux calculation.
The procedure for linking RTE to a hot-gas side program. TDK [5] (Two-Dimensional Kinetics
Nozzle Performance Computer Program) is described here.

}-4——/\ NICKEL —
\

COATING —

r~ COOLING
| CHANNEL >
/

COMBUSTION CHAMBER

|<———I\

SECTION A-A

Figure 1. A Rocket Thrust Chamber and Nozzle

NUMERICAL MODEL

The numerical model of the RTE is based on the geometry of a typical regeneratively-
cooled thrust chamber (shown in Figure 1). The wall can consist of three layers: a coating, the
channel, and the closeout. These three layers can be different materials or the same material.
The number of cooling channels in the wall are also specified by the user. For the numerical
procedure, the rocket thrust chamber and nozzle are subdivided into a number of stations
along the longitudinal direction, as shown in Figure 2. The thermodynamic and transport
properties of the combustion gases are evaluated using the chemical equilibrium composition
computer program developed by Gordon and McBride (2. 6] (CET, Chemical Equilibrium
with Transport properties). The GASP (GAS Properties) [3] or WASP (Water And Steam
Properties) [7] programs are implemented to obtain coolant thermodynamic and transport
properties. Since the heat transfer coefficients of the hot-gas and coolant sides are related to
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surface temperatures, an iterative procedure is used to evaluate heat transfer coefficients and
adiabatic wall temperatures.

STATION NUMBERS
mm-1 n -1 W20 9876
|
|

Figure 2. A Rocket Thrust Chamber Subdivided into a Number of Stations

The temperature distribution within the wall is determined via a three-dimensional finite
difference scheme. In this method, finite difference grids are superimposed throughout the wall
at different stations. The temperature of each node is then written in terms of temperatures of
neighboring nodes (the four closest nodes at the same station and two nodes at the neighboring
stations). The program marches axially from one station to another. At each station the Gauss-
Siedel iterative method is used to obtain convergence for the temperature distribution along
the radial and circumferential directions. When the axial march is completed, comparison
is made between the results of the present march and that of the previous one to see if the
convergence criteria in the axial direction has been met. If it is not met, the code starts again
at the first station and makes another axial march. The process continues until convergence
is achieved. A detailed description of this numerical model is outlined below.

First, the static pressures, temperatures, enthalpies and Mach numbers for the combustion
gases are evaluated using the ROCKET subroutine from [2]. It should be noted that these
properties are independent of wall temperature and only depend on the cross-sectional area
of the nozzle, the propellant used and chamber pressure. Indeed, the heat transfer from hot
gases to the chamber and nozzle wall will cause very little change in the gas temperature (the
thermodynamic process dominates the transport process).

On the coolant side. the stagnation enthalpy and density at the entrance to the cooling
channel are evaluated as functions of the coolant stagnation pressure and temperature (ico =
ico(Pco, Tco) and pco = pco(Pco, Tco)) using the GASP or WASP programs.

The model now begins its axial marches (passes) starting from the first station. At the
first axial march an initial guess for the wall temperature distribution is made. For the next
march, however, the results of temperature distribution for the previous march can be used as
an initial guess. The hot gas and coolant adiabatic wall temperatures and wall properties can
be evaluated at a given station based on the assumed wall temperature distribution using the
properties computer codes (2, 6, 3, 7] for the combustion gases and the coolant. The reference
enthalpy of the gas side. icx,, is given by [8]
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icx, = 0.5(icw, +igs,) + 0.180(ico, — iGs,) (1)

where igw,, is a function of gas static pressure Pgs, and gas-side wall temperature Tgw,, and
is evaluated using the program given in [2]. The gas-side adiabatic wall enthalpy, icaw, is
calculated using the following equation (8, 9]

icaw, = ics. + (Prex.)lico, — ics,) (2)

where the gas reference Prandtl number Prgx,, is

Crox nHGXn
Prox, = —28XnTT0n (3)
kcx,
Cpex,» HGX, and kgx, are functions of Pgs, and igx,. Once the gas-side adiabatic wall

temperature is determined, the wall adiabatic temperature is calculated via

Tecaw., = f(PGs,,icAw,) (4)

and using the combustion codes 2, 6]. The hot-gas side heat transfer coefficient. h¢, is given
by (8]

CG.kGX, , 08 0.3
= TRCG){“PTGX“ (5)

n

hc.,

where Cg, is the gas-side correlation coefficient given as input and the Reynolds number is
defined by

4We Tgs,

R -
GXn TdG 1hGXn TCXn ®)
Tex, = f(PGS,,iGXn) (7)
Trs, = f(PGS., iGS.) (8)

Once the hot-gas-side heat trausier coefficient is determined the wall heat flux can be
evaluated via

gn = hg,.(Tcaw, — Tew,) (9)
or
he, . .
= (icaw, —icw,) (10)
PGCXn

The adiabatic wall temperature and gas-side heat transfer coefficient. calculated from equa-
tions (4) and (5), or wall heat flux calculated using equations (9) and (10) will be used in the
conduction module to evaluate a revised wall temperature distribution. It should be noted
that the formulation given by equations (3-10) yields an approximate value for the wall heat
flux. To obtain a more accurate value for the wall heat flux a boundary layer model should be
implemented. The procedure for interfacing a boundary layer module to the present model will
be described later. Next, attention will be focused on calculating the coolant-side properties

and heat transfer coefficient.
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For the first station the coolant stagnation enthalpy. static pressure and static density
are set equal to the stagnation enthalpy, pressure, and density at the entrance to the cooling
channel (i.e., ico, = ico, Pcs, = Pco and pcs, = pco). For the other stations, the coolant
stagnation enthalpy is calculated via

(qu*l + gn-1 )Asn—l,n
2Wce

where ASp_1 n is the distance between two neighboring stations n — 1 and n and ¢l ! is the
heat transferred per unit length of the cooling channel from the hot gases to the coolant at
station n (calculated from the conduction subroutine at iteration j —1). For the first iteration
at station n, ¢4 ~! in equation (11) is not known; therefore the following equation is used to
evaluate the stagnation enthalpy

iC0, = 1C0n_; T (11)

Qn—lASn—l,n
We
Note that gn_1 in equations (11) and (12) are the heat transfer per unit length of cooling

channel at the previous station.
The coolant velocity is calculated from the following equation:

iC0, = iC0,_, (12)

Wc
PCSnAC, Nn
Note that pcs,,, is set equal to pco, for the first station, and for the other stations is evaluated
using the GASP or WASP programs (3, 7] based on the static pressure and enthalpy at the
previous iteration, i.e.,

Ves, = (13)

j -1 .j—1
pes, = p(Pls, ics,) (14)
At the first iteration, however, it is set equal to the static density of the previous station

(pts, = PCSn-1 )-
Once the coolant velocity is determined, the static enthalpy can be calculated using the

following equation:

Vés,
—t 5
290] (15)

The coolant static and reference Reynolds numbers, respectively, are given by:

108, = 1CO0, —

Wcedc,

Recs, = ———n 16
Ac,Nnucs, (16)
and
Recx, = Recs, (”—C—"ﬁ) (“ CSn > (17)
PCSn HCW,

where ucs, is a function of Pcs, and ics, and is calculated using the GASP program (3], or
the WASP program (7] if the coolant is water. Note also that d¢, is the coolant hydraulic
diameter at station n. To employ a better value for the Revnolds number, an average Reynolds
number between the entrance and exit to each station is evaluated, i.e.,

Recsy,, = 0.5(Recs, + Recs,._;) (18)
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RecXa,, = 0.5(Recx, + Recx,.,) (19)

The Reynolds number in the cooling channel is within the turbulent flow range; hence, the
Colebrook equation [10] is used to calculate the friction factor. This equation is given by:

e 2.5226 )
(20)

— =-201 +
VI o8 (3.70650 ReCX oy VT

This implicit equation has been shown to be very closely approximated by the explicit formula
(11]

1 001 e 5.0452 1 (e )1-1098 | 58506 o1
— = -20Ilo - o — —e

7T € |37065D  Recxn, = \2.8257 \D ReZSEL 21)
The correlation given by equation (21) is only valid for straight channels. To include the

curvature effect, the friction factor obtained from equation (21) must be multiplied by the
curvature factor given by Itd’s correlation {12]:

1/20

dCur. = I:RCCXA.,Q, ( TG ) :I (22)

RCu-r.,l

where r¢, is the hydraulic radius of cooling channel, Rcyr., is the radius of curvature. The
curvature factor given by equation (22) is valid when Recx,,,. (RZTCL)Q > 6, otherwise, ¢pcur. =

1.
Once the friction factors are determined, the viscous pressure drop between stations n — 1

and n is calculated using Darcy’s law [13] which is given by:
fn [ PCSn t PCSA-
(APcs,_yn)f = 57 (——-—1

- Ves. + Ve 2AS,,_
8¢c \ dc, +dc,_, >( C8n Gt ) ASn-1n (23)

and the momentum pressure drop is calculated via

~ 2 Wé 1 1
(APCS.-n )11 = <(NAC)n-—1 + (NAc)n) ge ((pcsAcN)n - (PCSACN)n-l) 24

An average value of variables between stations n and n — 1 are used to improve the accuracy.
The static pressure at each station is calculated based on the viscous and momentum pressure
drops and is given by:

Pcs, = Pcs,_, — [(APcsn_l.n)f + (APcs,,_l,n)M] (25)

Once the coolant static pressure is determined, the coolant wall properties which are functions
of the static coolant pressure Pcgs, and wall temperature, i.e.,

Cocw, » LCW.» kew,, icw, = f(Pcs,, Tew,) (26)

are evaluated using the GASP or WASP programs. It should be noted that the wall temper-
ature is not constant at a given station; hence, three coolant wall properties which are based
on the lower, upper and side wall temperatures are determined. The reference and adiabatic
wall enthalpies at the station are, respectively, calculated from the following equations (8]
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icx, = 0.5(ics, + icw, ) + 0.194(ico, — ics,) (27)

and

icaw, = ics, + (Prcx)Y3(ico, — ics.) (28)

The adiabatic wall temperature is a function of the coolant static pressure and the adiabatic
wall enthalpy and is evaluated using the GASP program [3]. Note that the Prandtl number in

equation (26) is expressed by:

_ CchﬂCX (29)

where

Cpex» HCx: kcx = f(Pcs,icx)

Three correlations may be used to evaluate the heat transfer coefficients in the cooling
channels. The simplest one is given by the following correlation (see [8. 9]):
N = Co, R4 Pr £

Most recently, a new correlation is presented in [14, 15]. In this correlation the Nusselt
number is given by:

Nu

—C 0.7 p,.04
N, c.Re T (31)
where
Nuy = 055
¢ =1+~v(Tw — Ts)
and

-|12e) 2 (37)s
pdTlp  p(%)T
Properties for the above correlation are based on the coolant static temperature Tcg, and

static pressure Pcg. Correlations described by equations (30) and (31) give inaccurate results
when the coolant is liquid oxygen. A correlation, specifically for oxygen has been proposed

[16]. This correlation is given by:

Cp 0 Pcri\%*? kcs pcw
Nu= Cg,RecsPr®* | = (—"> (——) (—) (32)
Cpcs Pcs kcw pCs

where Pcypi = 731.4 psia is the critical pressure and

— _ icw —ics
=
Tew — Tcs
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The properties in the above correlations are calculated using the GASP program (3], or the
WASP program [7] if the coolant is water. It should also be noted that there are three
coolant heat transfer coefficients and adiabatic wall temperatures. They are for the top, side.
and bottom walls of the cooling channel. The variable heat transfer coefficient is due to the
variable wall temperature in the cooling channel. The coolant reference and adiabatic wall
enthalpies are also functions of wall temperature and are larger for the surface nodes closer
to the bottom of the cooling channel. The correlation factors for the heat transfer coefficient,
Cc,, in equations (30) and (31) are usually equal to 0.023 for most coolants. When the coolant
is liquid oxygen, however, a factor of 0.0025 is used in equation (32).

The correlations given by equations (30)-(32) are for fully developed turbulent flow in a
smooth and straight tube (channel). To include the effect of the entrance region, they are
multiplied by the following coefficient [17]:

n . -0.325
§Ent. = 2.88 (2_=17A_5__+_1) 5
Cn

Other entrance effect factors for different types of cooling channel entrances reported in {17]
are given by:

" AS; -0.7
dc,
for a 90° bend entrance. Taylor [18] suggested the following correction factors:
$Bnt. = (Tw/Ty) 159/ (Lies ASiir1/den )] (35)
for straight tube and
n n .
PEnt. = (Tw/Tb){l'sg/(Z.'=1 ASiiv1/de,)] [1 +5/ (Zz:ldAsz,H—l):l (36)
Cn
for a 90° bend entrance. The correction factor for the curvature effect is given by [19]:
re 21%1/20

where r¢, is the hydraulic radius of cooling channel, Rcyr., is the radius of curvature, the sign
(+) denotes the concave curvature and the sign (-) denotes the convex one. To incorporate
the effect of surface roughness on the heat transfer coefficient, a simple empirical correlation
is suggested by Norris (20]:

N n
e _ < ! ) (38)
NUsmooth fsmooth

where n = 0.68Pr%%15, For f/fsmooth > 4.0 Norris finds that the Nusselt number no longer
increases with increasing roughness.

Once the heat transfer coefficients and adiabatic wall temperatures for the hot gas and
coolant are evaluated, a finite difference model is used to re-evaluate the wall temperature
distribution. This model has been specifically developed for three-dimensional conduction in
a rocket thrust chamber and nozzle, as shown in Figure 1. Because of the symmetry of the
configuration, computations are performed for only one cell (see Figure 3). Since no heat is
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transferred to the two sides of the cell, they are assumed to be insulated. A finite difference
grid is superimposed on the aforementioned cell as shown in Figure 4. In this program the
number of nodes in the radial direction for different layers and in the circumferential direction
for the land and channel area must be specified. Thus, the grid size can vary from one layer
to another. Each node is connected to four neighboring nodes at the same station. It also
exchanges heat with its counterpoints at two neighboring stations (i.e., stations n + 1 and
n —1). The finite difference equation for a node located in the middle of a material is given by

Tl W/R1+ TGk a/ R+ T{L o/ Ra + T/511 o/ Ra + Tijins1/Rs + Tijm-1/ Re

i _ i+1,7,n -
han 1/Ry+1/Ro+1/R3+1/R4+1/Rs+ 1/Rs¢
(39)
where
R rA¢ ( 1 + 1 )
1= - T -1 -1
Ar (Asfj Iny ASZ;-" 1) kijm  Kitljn
R Ar ( 11 )
2= -1, e -1 -1
(r+ 480 (AT + ASE) \kiGn kigtin
R rAe < 1L, )
3= — — —
Ar (ASEm+ ASE) \Kijn Klin
R Ar < 1,1 )
4= _ = T—
(r - A%)A¢ (As{fj In As;};‘“) KoL R
R AS;-’:;"+1 1 .\ 1
5= =
24i5n \kiGm Kigmn+1
ASTTN (0 1
R6 = QA.‘I’? ( -1 + ki )
t,jn—-1 ki,j,n t,7,n—1
(rAdATr)n+1 + (rA0AT),
Aig’,'n = 2
and

(rA¢AT)n + (TAGAT)n—1
Aijn-1 = 5

and ! is the Gauss-Siedel iteration index. Note that the above equation is a three-dimensional
finite difference equation. The Gauss-Siedel iteration, however, is only performed for the
nodes on the n-th station and Tjjn+1 and Tjjn-1 are kept constant during this iteration.
The value of T; jn-1 in equation (39) is from the recent march and T ;41 from the previous
march. The conductivity in equation (39) is a function of temperature, i.e., k = k(T'). Similar
equations are derived for other nodes (boundary nodes and nodes at the interface between two
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different materials). It should be noted that at the boundary nodes, depending on the boundary
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Figure 5. Resistances between a typical interior node and its adjoining nodes.

conditions, convective and radiative terms also appear in the nodal balance of energy equation.

For example, for a node at the inner surface of the nozzle the finite difference equation is given
by

{_ T/ Ra+ Ti5hun/ Re + T3 in/ B3 + To/Ra + Tunit/Ro 4 Tono1/Ro + Qr
ign = 1/R1+1/R2+1/R3+1/Rs+ 1/Rs+ 1/Rs

(40)
where
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Note that equation (40) is used when hot-gas-side heat transfer coefficient is known and wall
heat flux is evaluated based on the temperature difference, i.e., equation (9). When wall heat

flux (gn) is known, equation (40) becomes

Tl,]nz[ 1+1]n/R1+ ]lln/R2+ ljn/R3+T1,Jn+l/R5+T,]n l/R6+
GnAS(ASE I+ ASE) /2 4+ Qr] /(1/Ry +1/R2 + 1/Rs + 1/Rs + 1/Re)  (41)
where g is wall heat flux which can be an input of the program or evaluated using equation

(10). Q is the radiative heat transfer term which is evaluated based on the Discrete Exchange
Factor (DEF) method (21, 22, 23. 24| and is given by:

A¢(A5n 1"+ASnn+l)sznﬂ m+2
, o e Z ws,EleSISn + nglEngGlSn Es ) (42)

=1 =1

E,, and E,, are surface and gas emissive powers at stations n and are related to their tem-

peratures via

2rr 4

E;, =eo

sin B, ¢

Eg = 4Ky (1~ wo)merT;l

DS,S, and DG;S,, are total exchange factors between differential surface and gas elements at
station ! to a surface element at station n. The total exchange factor between two elements
is defined as the fraction of the radiative energy that is emitted from one element and is
absorbed by the other element via direct radiation and multiple reflections and scatterings
from surfaces and gas. Procedures for calculating direct and total exchange factors in rocket
thrust chambers and nozzles are presented in [23] and [24]. The radiative heat transfer term,
given by equation (42), evaluates the radiative energy coming to a surface node from all parts of
the engine. This is done by numerical integration of the radiative energy incident on the surface
at station n that is originated (emitted) from station I. The weight factors ws and wy are used
for numerical integration of surface and gas radiation along axial direction. If the stations
are equally spaced then the weight factors are the same as those of trapezoidal or Simpson
methods. In the present application, however, the stations are more concentrated at the throat
area and are unevenly spaced. The rectangular numerical integration method is suitable when
stations are not equally spaced and the weight factors are equal to the width of each station, i.e.,
(ASZ};I'" + AS:B"H)/Q. It should be noted that the evaluation of exchange factors DSiS,, and
DG Sy involves multiple integration (see [23] and [24]) and requires significant computer time.
Values of these exchange factors depend on the geometry of engine and radiative properties
of combustion gases. Hence, they can be evaluated using external modules and the resulting
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exchange factors stored in files for different engines. These files can then be used as inputs to the
RTE. A separate computer program, namely RTE_DEF (Rocket Thermal Evaluation_Discrete
Exchange Factor), has been developed for evaluation of the total exchange factors. Note
that the combustion properties code given by Gordon and McBride [2] does not provide the
radiative properties of combustion gases. These properties may be obtained from [25] and {26].
For example, if the fuel is RP-1, the combustion gas species mole fractions are obtained from
the combustion code (5], containing 17%CO2, 30%CO, 33%H20. 6%0H, 2.5%02, 3%H, 7%H2
and 1.5%0. Using an integrated average value of the absorption coefficients of these species.
the overall absorption coefficient is found to be K, = 2.5in" L,

Based on the revised wall temperature, new hot-gas and coolant wall properties, heat
transfer coefficients and adiabatic wall temperatures are calculated using equations (1) through
(42). Again, a new wall temperature distribution based on the most recent heat transfer
coefficients and adiabatic wall temperatures is calculated using the finite difference subroutine
for heat conduction within the wall. This procedure is repeated until the relative difference
between the temperature distribution of two consecutive iterations becomes negligibly small.
After the results for station n converge, the coolant Mach number and entropy as functions
of static pressure and enthalpy (Mc,,sc, = f(Pcs,.ics,) ) are evaluated using the GASP
or WASP programs. Next, the coolant stagnation pressure is evaluated based on the coolant
entropy and stagnation enthalpy, i.e., Pco, = P(ico,,sc,). The GASP and WASP programs
do not have explicit expressions for pressure in terms of entropy and enthalpy. Thus, an
implicit relation for stagnation pressure (i.e., s¢, = s(Pco,,ic,)) with the secant method for
solving nonlinear equations is used to determine Pcy, . In the secant method, two initial guesses
for the stagnation pressures were made (P; = Pco,_, + 20 and P, = Pco,_, — 20) and the
corresponding entropies s; and sp were determined. The secant method’s iterative equation is

given by:

Pest = Pr — sp i1k (43)
Sk-1— Sk
where k is the iteration index. When equation (43) converges (the convergence criterion is
|sk — sc,| < 0.0001), the coolant stagnation is set equal to the latest value of Py. Finally, the
coolant stagnation temperature is determined based on the coolant stagnation pressure and
enthalpy (Tco, = T(Pco,,ico,))-

The program then marches axially and performs similar calculations (i.e., equations (1)
through (43)) for all stations. Once the results of the last station (station m) converged, the
results of this march are compared to those of the previous march. If the relative differences
between the results of two consecutive marches is less than the axial convergence criterion the
program stops, otherwise it continues its axial marches until convergence is achieved. The
effect of axial conduction can be eliminated by setting the axial convergence criterion greater
than one or setting the maximum number of passes equal to one. A complete flow chart of
RTE is presented in {1].

The method described here, i.e., axial marches along axial direction, has several advan-
tages over the direct solution of a three-dimensional finite difference formulation. First, it
converges very quickly. Second, it requires less memory. Third. it allows the user to control
the importance of axial conduction by allowing for different convergence criterion between
the axial and radial and circumferential directions. For example. in analysis of a thin-walled.
radiatively-cooled, low-pressure engine, axial conduction is negligible. In this case one might
set the convergence accuracy to 5% in the axial direction and 0.1% in the other directions. In
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the case of a thick-walled, regeneratively-cooled, high-pressure engine, axial conduction may
be significant. Thus, the accuracy in the axial direction may be set to 0.1% and 0.1% in the

other directions.

Results of a Typical Run

RTE is used to determine the temperature distribution and heat transfer characteristics of
a Liquid Oxygen/ Liquid Hydrogen rocket engine. The engine has the following specifications:

Fuel LH,

Oxidant LOo

Coolant LH,
Chamber stagnation pressure Pgo 1600 psi
Coolant stagnation pressure Pco 2400 psi
Fuel flow rate 35.412 1b/sec
Coolant flow rate 5.059 1b/sec
Fuel/Oxidant Mixture ratio 5.9957
Coolant stagnation temperature 110 R
Number of cooling channels 100

The engine is subdivided into 29 stations. Table 1 shows dimensions of the engine and
some thermal characteristics at each station (see Figure 3 for notation). Note that dimensions
given in Table 1 are in inches. Also, DCIN = 0.035 in. remains constant along the engine.
The outer surface radiates to space and its emissivity is 0.9. The thermal conductivities of
wall materials, i.e., nickel and copper are functions of temperature.

The resulting wall temperature distributions for stations 1, 9, 16 and 29 are shown in
Figure 6. A close examination of the temperature distributions reveals that the temperature
gradient is relatively large in radial direction , especially for station 9. This may also be true
for any other high pressure thrust chamber. Also, the results shown in Figure 6 can be used
to optimize the cooling channel aspect ratio. For example, there is no temperature gradient at
the upper section of the cooling channel in Figure 6a (station 9, throat). Hence, the cooling
channel can be shorten slightly without changing the overall heat transfer to the coolant.

HOT-GAS-SIDE BOUNDARY LAYER ANALYSIS INTERFACE

The convective heat transfer coefficients and heat fluxes for the hot-gas-side of the RTE are
evaluated based on a tube-like correlation [8], see equation (7). To obtain more accurate results,
RTE can be linked to a nozzle flow and boundary layer analysis program. The procedure for
linking RTE to TDK (Two-Dimensional Kinetics Nozzle Performance Computer Program [5])
is described in this section. A similar approach may be implemented to link RTE to other
nozzle boundary layer analysis programs.

The flowchart for the iterative procedure for linking RTE to TDK is shown in Figure 7. In
this approach, initially, the wall fluxes and temperatures are evaluated by running RTE under
an unknown wall heat flux condition. In this run, RTE uses it internal hot-gas-side routines.
The wall temperatures calculated by RTE are then used in the inputs of TDK. Using one
of TDK’s boundary layer modules (BLM or MABL)[5], a new wall heat flux distribution is
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Figure 6. Temperature distribution at stations a) 1, b) 9, ¢) 16 and d) 29.
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evaluated. The wall heat flux distribution is inserted into the RTE inputs. This time, since
the hot-gas-side heat fluxes are known, RTE bypasses all hot-gas-side calculations (e.g., its
CET subroutine and hot-gas-side heat transfer coefficient correlations) and calculates the wall
temperature distribution. The new wall temperature distribution along the axial direction is
then input to TDK and a new heat flux distribution is calculated. This iterative procedure
continues until convergence is reached.

TDK RTE.f

Check Convergence

STANRT \

RTE input (RTE.INP)

Unknown wall fluxes
(From C-shell argument)

TDK.L

RTE TDK.[

TDK input
Without wall temperatures
(From C-shell argument)

Figure 7. Flowchart of RTE-TDK Interface.

The RTE-TDK model is used to predict wall heat fluxes and temperatures of the LO/LH
engine presented in the previous section. The resulting wall heat flux and temperature distri-
butions for both RTE and RTE-TDK calculations are shown in Figures 8 and 9. As shown
in these figures, the heat flux and temperature distribution when the boundary layer module
is used are consistently below those calculated via hot-gas-side heat transfer coefficient, i.e..
equation (5). The reduction of heat flux and temperature is due to the relaminarization of
accelerating flow.
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Figure 9. Wall temperatures for a H2 cooled engine based on RTE and RTE-TDK models.
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Table 1: Parameters of thrust chamber and nozzle at different stations.

Station X DG CCW CCH THKNS

0. 2.6 0.04 0.1 0.335
-0.1 2.608 0.04 0.1 0.335
11 -0.274 2.656  0.04 0.1 0.335
12 -0.506 2.746  0.04 0.1 0.335
13 -0.906 3.924 0.05 0.1 0.335
14 -1.306 3.092 0.05 0.1 0.335
15 -1.706 3264 0.05 0.104 0.339
16 -1.906 3.344 0.05 0.113 0.348
17 -2.106 3.432 0.05 0.123 0.358
18 -2.306 3.516 005 0.125 0.36
19 -2.506 3.602 005 0.125 0.36
20 -2.906 3.77 0.05 0.125 0.36
21 -3.306 3.94 0.05 0.125 0.36
22 -4.106 4236 0.05 0.125 0.36
23 -4.506 4.358 0.05 0.125 0.36
24 -5.506 4.6 0.05 0.125 0.36
25 -6.506 4.744 0.05 0.125 0.36
26 -7.572 4.8 0.05 0.125 0.36
27 -8.35 4.8 0.05 0.125 0.36
28 -9.0 4.8 0.05 0.125 0.36
29 -9.875 4.8 0.05 0.125 0.36

1 3.55 6.978 0.05 0.133 0.368
2 2.75 5.898 0.05 0.123 0.358
3 2.0 4.88 0.05 0.113 0.348
4 1.4 4076 0.05 0.104 0.339
5 0.9 3.402 0.05 0.1 0.335
6 0.559 2.942 0.04 0.1 0.335
7 0.3 2.692 0.04 0.1 0.335
8 0.1 2.610 0.04 0.1 0.335
9

10

CONCLUDING REMARKS

The numerical model for a rocket thermal analysis code (RTE) has been discussed. This
model allows temperature variation along three directions: axial, radial and circumferential.
The numerical results presented show that there is a large temperature gradient in the axial
direction for engines with a high chamber pressure. The resulting wall temperature distribution
can be used to optimize the cooling channel aspect ratios

The RTE needs to be modified further to incorporate a wide range of cooling channel shapes
and a CFD model for the cooling channel flow analysis. Efforts are presently under way to
include these items in the RTE.
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NOMENCLATURE
A area
C correlation factor for heat transfer coefficient
Cp specific heat
d diameter
DGiSn total exchange factor between gas and surface differential elements
DSiSy total exchange factor between two surface differential elements
e cooling channel surface roughness
E surface and gas emissive power
S friction factor
Je gravitational constant. 32.2 ft.lbm/lbf.s2
h heat transfer coefficient
i enthalpy
J work/heat proportionality factor
k conductivity
K, total extinction coefficient
m total number of axial stations
N total number of cooling channels
P pressure
Pr Prandtl number
q heat flux
Qr radiative heat transfer at inner surface
T radius
Rour. radius of curvature
Rn thermal resistance
Re Reynolds number
s entropy
T temperature
Vv velocity
w weight flow
w weight factor for discrete exchange factor method
z station position in longitudinal direction

Greek Symbols

3 angle between a vector normal to the nozzle surface and axial direction
AS length of cooling channel between two stations
Ap pressure drop
Ar radial mesh size
A¢ circumferential mesh size
€ convergence criteria or error limit
u dynamic viscosity
159



P density

o Stefan-Boltzmann coefficient

¢ entrance and curvature effect correction factors
Subscripts

A adiabatic

Avg. average

C coolant

Cur. curvature

f viscous or friction

G gas

i node 1

j node j

k secant method iteration number
M momentum

n related to station n

r radiation

S static

s surface

w wall

X reference

0 stagnation

Superscripts

7 iteration number

l iteration number for conduction model
n related to station n
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SUMMARY

The critical state of vortex cores downstream of vortex breakdown has been studied. Base vortical
flows were computed using the Reynolds-averaged, axisymmetric Navier-Stokes equations. Stan-
dard K - £, RNG and second-order Reynolds stress models were employed. Results indicate that
the return to supercriticality is highly dependent on the turbulence model. The K - € model pre-
dicted a rapid return of the vortex to supercritical conditions, the location of which showed little
sensitivity to changes in the swirl ratio. The Reynolds stress model predicted that the vortex
remains subcritical to the end of the domain for each of the swirl ratios employed, and provided
results in qualitative agreement with experimental work. The RNG model produced intermediate
results, with a downstream movement in the critical location with increasing swirl. Calculations
for which area reductions were introduced at the exit in a subcritical flow were also performed
using the Reynolds stress model. The structure of the resulting recirculation zone was altered sig-
nificantly. However, when area reductions were employed within supercritical flows as predicted
using the two-equation models, no significant influence on the recirculation zone was noted.

INTRODUCTION

Over the past 30 years, considerable effort has been expended toward an understanding of the
mechanisms inherent in the development and evolution of longitudinal vortices. This has been
motivated, in part, by the desire to control and/or disable these vortices in applications such as the
aircraft-wake-vortex hazard and submarine non-acoustic stealth. Perhaps in no application are the
properties of swirling flows exploited to a greater extent than in the operation of gas turbine and
industrial furnace combustion chambers. Here, a region of high swirl is induced at an entrance to
the combustor liner, typically through a set of swirler vanes, resulting in a region of recirculating
flow. This region acts as a fluid dynamic flameholder, providing a region of low velocity within
which combustion may be sustained, and recirculating hot, unburned gases to the base of the
flame.
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This recirculating region is known as a vortex breakdown. Although several theories have
been put forth to explain the breakdown phenomena, perhaps none are more widely recognized
than the early works of Squire [1] and Benjamin [2]. By choosing certain functional forms for the
base vortex flow, Squire reduced the nonlinear equations of motion (inviscid, steady) to a linear
disturbance equation. He subsequently solved the equation to determine conditions under which a
steady perturbation to the flow could exist. This condition, in terms of a swirl ratio, was taken as a
limiting condition for which breakdown could occur. Benjamin examined this phenomena from a
different perspective. He considered vortex breakdown to be a finite transition between two
dynamically conjugate states of flow, similar to the occurrence of a hydraulic jump in open chan-
nel flow. The two states were a subcritical state, which was defined as a flow which could support
standing waves, and a supercritical state, unable to support standing waves. In this context, the
work of Squire defined a critical condition marking the interface between the two states.

The criticality condition has not received much attention from those computing numerical
solutions to swirling flows, and flows containing vortex breakdown in particular. Of special inter-
est is the region downstream of the breakdown. Immediately downstream, the flow is most assur-
edly subcritical (c.f. Tsai and Widnall [3]). However, as the axial velocity recovers and the swirl
velocity decays, the flow may return to a supercritical state at some downstream location. The
consequences of the failure of a swirling flow to return to supercriticality has been discussed by
Escudier and Keller [4]. In that experimental study, it was shown that the upstream influence of an
exit contraction on vortex breakdown was substantially greater when the flow remained subcriti-
cal compared to a flow that reverted to supercritical (upstream of the contraction). Escudier and
Keller suggest that this phenomena might have significant consequences in the imposition of
accurate outflow boundary conditions.

Most swirling flows of practical interest, such as the flow within a combustor, are turbu-
lent. For numerical calculations of turbulent swirling flows, the choice of turbulence model is of
vital importance. It is well known that the standard K - € model does a poor job of predicting
strongly swirling flows (c.f. Jones and Pascau [5]). One of the consequences of choosing the
K - £ model is that the wake region near the vortex centerline (downstream of breakdown) recov
ers much more rapidly than has been shown to occur in experiments. On the other hand, second-
order closure models contain the physics necessary to model strongly swirling flows, and tend to
do a better job of predicting the recovery of the axial velocity component (c.f. Jones and
Pascau [5]).

These varying predictive capabilities have consequences in terms of the criticality of the
flow. That is, one would expect the K - € model to predict a return to criticality upstream of the
position predicted by second-order Reynolds stress models. This behavior has been investigated
to some extent by Hogg and Leschziner [6]. However, in that work swirl ratios were such that no
recirculation zone was formed when the Reynolds stress model was employed. In addition, no
direct calculations of the critical condition of the flow were made. However, the critical state
(based on an inviscid analysis, c.f. Hall [7]) is not difficult to compute and thus the purpose of
this research is to further investigate the criticality conditions of swirling flows downstream of
turbulent vortex breakdown as predicted using several different turbulence models (K - ¢, RNG
(c.f. Yakhot et al. [8]) and differential Reynolds stress). Geometries both with and without an exit
restriction are employed. The relationship and consequences (if any) of the state of the flow (in
terms of criticality) to the outflow restriction and turbulence model employed will be determined.
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NUMERICAL PROCEDURE

The incompressible, axisymmetric Reynolds-averaged Navier-Stokes equations are solved for the
swirling flow within a combustor-type geometry. Although the governing equations are solved in
general curvilinear coordinates, for purposes of brevity they are presented below in cartesian ten-
sor form. The continuity and momentum equations are given as:

ou;

67 -0 (1)
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respectively, where u; is the mean velocity, p is the density, u is the viscosity, p is the mean pres-
sure and Ti- u'u' j are the Reynolds stresses.

Turbulence Models

Although the turbulence models utilized in the present study are well documented in the litera-
ture, the equations are inciuded for completeness. When the K — € or RNG models are employed,
the Boussinesq hypothesis provides an expression for the Reynolds stresses is terms of the gradi-
ents of the mean flow as:

2

where v, is the turbulent viscosity, K is the turbulent kinetic energy and § ij is the strain rate. The
turbulent viscosity is expressed in terms of K and the dissipation rate ¢ as:

2
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Transport equations for K and e, respectively, are written as:
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In the case of the standard K - € equation R = 0. For the RNG model (see Yakhot et al. [8]):
C,m>(1-1/1p) ¢2

k= 1+ﬁr|3 K ™

where 1 = SK/eand S = (25,5;) 172,
It remains to specify the constants in the above equations. For the K — € model the stan-
dard values for boundary layer flows (C, = 0.09, C e = 1.44, C52 =192 g, = 1.0 and
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o, = 1.3) have been taken. For the RNG model, theoretical analysis yields that C., = 1.68,
C,, =142,0, =0, = 072, = 438 and § = 0.012.

The Reynolds stress model involves the solution of transport equations for the individual
Reynolds stresses ;4—',7 The following equations, employing the closure assumptions of Gibson
and Launder [9], and Launder [10], are solved:

Du';u'; v -
jo B (235 4 p.. -
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The production term is computed as:

0y ——-0;
Pij-—uiuka—£;+u}-uka—xk (9)

The pressure/strain and dissipation terms are modeled as:

E —— 2 2
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with values C; = 1.8 and C, = 0.06 assigned to the constants.

For each model wall functions based upon the assumption of a fully developed equilib-
rium turbulent boundary layer are utilized in the near wall region. This approach is deemed suit-
able since the physics of the problem are not dominated by near wall phenomena.

Solution Procedure

The above equations were solved using the commercial code FLUENT [11]. FLUENT uti-
lizes a pressure-based control volume technique. Second-order upwind interpolation is used to
provide values of variables on cell faces. Pressure-velocity coupling is implemented using the
SIMPLEC algorithm [12]. Convergence of the solution is assumed when the sum of the normal-
ized residuals for the conservation equations is decreased to a minimum of 1.0 x 1073 (The resid-
ual for a given equation consists of the summation of the unbalance in the equation for each ceil in
the domain.) Comparisons revealed that solutions converged by an additional factor of two were
virtually indistinguishable. Since the above techniques are well known and widely discussed in
the literature, they will not be elaborated upon here.

Geometry and Boundary Conditions

The geometric configuration is that of a prototypical combustor. The geometry near the expan-
sion/breakdown region is shown with the computational grid superimposed in Figure 1. The
domain was discretized using 170 (axial) and 40 (radial) grid points. Grid points were clustered
near the breakdown region. The length of the domain is 40k, where h is the radius at inflow. The
expansion of area ratio 4:1 takes place over a length of 3h. Note that the i=constant lines in the
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physical grid occur at constant x — this is to facilitate calculation of the flow criticality. Addi-
tional calculations were made utilizing a 114 x 27 grid. No significant changes in the solutions
were noted.

At inflow, a solid body rotation of the form w = Qr has been specified (where w repre-
sents the circumferential velocity). The value of Q was assigned values ranging form 0.75 to 1.5.
The axial velocity has been taken as uniform, thatis u = 1.0, and the turbulence intensity was set
at 10%. At the outflow boundary, zero streamwise gradient conditions were enforced. The appro-
priateness of these conditions is confirmed by examining the distribution of the velocity contours
(as shown in the Results section) near the outflow boundary. In addition, for each calculation the
Reynolds number, based on the axial velocity and duct radius at inflow, was 100,000.

Criticality Calculations

Determination of the criticality of the flow is based the solution of the following ordinary differ-
ential equation (c.f. Benjamin [2] or Hall [7]):

0F, 10F. [ 19%  1ou, 1 3
— -3 [————2-+——— —3—2—.i|FC-0 (12)
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where x = rw is the circulation and F is a quasi-cylindrical perturbation shape function.
Assumptions inherent in the above equation are that the fluid is inviscid, and that the flow is
steady and axisymmetric. Thus, the criticality condition, as defined by Benjamin or Hall, is con-
cerned only with the propagation or existence of axisymmetric waves on inviscid cores. However,
we shall utilize the theory to predict the ability of high Reynolds number turbulent cores to sup-
port axisymmetric waves.
The radial distributions for u and K are available at any axial location from the mean flow

ulations. The above equation is solved subject to the boundary conditions F_ = 0 and
—rc = constantat r = 0. The flow is subcritical if the solution curve passes through zero in the
{hterval 0 < r < 2h, supercritical if the solution does not pass through zero, and critical if the solu-
tion is zero at both r = 0 and r = 2h (where 2h is the duct radius). The above equation is
solved utilizing a second-order accurate modified Euler technique.

RESULTS

The behavior of each of the turbulence models in predicting the location of the return to criticality
of the vortex is presented first. Following this, contours of constant axial velocity are examined,
and the effects of outlet restrictions on the flow are discussed.

Mean flow calculations were performed for Q=0.75, 1.125 and 1.5, utilizing the K - ¢,
RNG and Reynolds stress turbulence models. The axial location at which the vortex returned to a
supercritical state was computed by solving an ordinary differential equation, as described earlier.
In each case, the vortex was supercritical upstream and subcritical immediately downstream of
the breakdown location. The results for return to supercriticality are summarized in Figure 2. The
K - ¢ model predicted a return to supercritical conditions at locations considerably upstream of
that predicted by the other models. In addition, and contrary to what one would expect, the K — €
model predicted that the location at which the vortex returned to a supercritical state was not
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affected by changes in the swirl level at inflow. Conversely, the RNG model showed an expected
sensitivity to increases in swirl. That is, as the swirl level at inflow was increased, the critical
location moved downstream. In the case of the Reynolds stress model, the vortex remained sub-
critical to the exit for all swirl levels. We note that Q = 0.75 represented the approximate mini-
mum swirl level for which a recirculation zone was formed using the Reynolds stress model.
Consequently, calculations of vortex breakdown flows using Reynolds stress models will likely
involve outflow boundary conditions imposed on subcritical flows (due to practical limitations on
the length of the computational domain). However, this need not be the case for the two-equation
models.

Escudier and Keller [4] have shown that the shape and internal structure of the recircula-
tion region is strongly influenced by outlet restrictions if the restriction is imposed within a sub-
critical flow. To examine whether or not these effects are observed in numerical calculations,
results have been computed using the Reynolds stress model for area reductions of 19% and 36%
with Q = 1.5. The reductions extended over 33.67h < x < 40h. Results are presented in terms of
axial velocity contours in Figures 3a-c for the unrestricted case, the 19% reduction, and the 36%
reduction, respectively. (For purposes of clarity, the contour plots have been scaled by a factor of
3 in the radial direction. In addition, the inner-most contour levels within the bubble structure rep-
resent the level u = -0.1.) It is clear that the 36% area reduction has a large effect on the shape
of the aft portion of the bubble near the vortex centerline. The zero axial velocity contour under-
cuts this portion of the bubble, in effect lifting the recirculation zone off the axis. Note however,
that the forward portion of the bubble remains virtually unaffected. In addition, a strong jet-like
vortex core exists downstream of the breakdown. These features are in very good agreement with
those observed by Escudier and Keller [4] in their experimental work. For the 19% area reduction
case, the primary effects concern the rate of recovery of the axial velocity downstream of the
breakdown. The shape and internal structure of the bubble remains similar to that of the unre-
stricted case. This result is also consistent with the results of Escudier and Keller. We do note that
the geometry of Escudier and Keller was somewhat different than that employed in this study. In
their study, a solid inner cylinder was included at the inflow plane, and a step expansion rather
than a gradual expansion was used. Numerical convergence problems prevented our use of that
geometry. However, the structure of the recirculation region for confined flows undergoing vortex
breakdown does not appear to be overly sensitive to the inlet geometry.

It is of interest that the downstream measurements by Escudier and Keller were 0.39L
upstream of the area reduction (where L was the distance between the inlet and the reduction).
Thus, it is quite possible that for their cases in which the area reductions were very large, the flow
actually returned to a supercritical state upstream of the restriction (but downstream of their last
data point). That is, due to continuity the mean axial flow velocity increases with the square of the
area reduction; however conservation of angular momentum dictates that the swirl velocity
increase in a linear manner. Thus, the ratio of swirl to axial velocity generally decreases, resulting
in a possible return to supercritical conditions. In fact, the authors found that for the low swirl
case (Q = 0.75) area reductions on the order of 20% did result in the flow returning to a super-
critical state slightly upstream of the area reduction. However, for the high swirl cases shown in
Figures 3b-c, the vortex remained in a subcritical state to the exit.

Contours of constant axial velocity for the K - € and RNG models (without exit restric-
tions) are shown in Figures 4a-b, respectively for the case Q = 1.5. The differences in the axial
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velocity distributions downstream of the breakdown region as predicted by these models and the
Reynolds stress model are quite large. The rapid increases in the axial velocity for the K - € and
RNG models (accompanied by equally rapid decreases in the swirl velocity) account for the rapid
return to supercriticality. In addition, the internal structures of the bubbles predicted by these two-
equation models differ considerably amongst themselves, and with that produced by the Reynolds
stress model. Calculations were also made for the K — ¢ and RNG models 36% area reductions.
For the sake of brevity, we show only the results from the RNG model in Figure 4c. (Recall that
for the two-equation models the vortex was supercritical upstream of the restriction.) As the fig-
ure reveals, virtually no difference in the axial extent or shape of the recirculation region resulted
(when compared with the case in which no restriction was employed). This further confirms the
experimental results of Escudier and Keller, and highlights the extreme sensitivity of strongly
swirling flows to the turbulence model employed.

CONCLUSIONS

It is clear from the results of this study that wide differences exist in the predictions of two-equa-
tion and Reynolds stress turbulence models for return to supercriticality of swirling flows down-
stream of vortex breakdown. The results of the Reynolds stress model are in better agreement
with experimental results for swirling flows (in similar geometries) as described by Escudier and
Keller [4] than results predicted using two-equation models. Thus, the study further highlights the
inappropriateness of using two-equation models to predict strongly swirling flows. The sugges-
tion by Escudier and Keller that outflow restrictions might have a drastic effect on the structure of
the breakdown as predicted through numerical solutions to the equations of motion was con-
firmed. Results revealed that for relatively large area reductions (on the order of 36%), the struc-
ture of the recirculation region may be greatly affected. However, for lesser reductions, the shape
of the recirculation zone may be very similar to that resulting from the unrestricted geometry.
Consequently, it does not appear that the requirements for the specification of outflow boundary
conditions need be significantly more stringent for subcritical swirling flows than for supercritical
flows, or for flows without swirl. This is fortunate—the persistent nature of the subcritical flow as
revealed by the experiments of Escudier and Keller {4], and as predicted by the Reynolds stress
model would severely restrict the predictive capability of many engineering-type calculations.

The authors plan future work in the area of combusting flows. For these calculations,
accelerations in the axial velocity due to decreases in density should considerably alter the critical
state of the flow.
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3. Contours of constant axial velocity; Reynolds stress model, Q = 1.5; contour levels from - 0.1
to 1.0 in intervals of 0.1 (geometry scaled by a factor of 3 in the radial direction).

“a) No outlet restriction

b) 19% area reduction

¢) 36% area reduction
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4. Contours of constant axial velocity; Q = 1.5 (geometry scaled by a factor of 3 in the radial
direction).

; a) K - € model; contour levels from -0.2 to 1.0 in intervals of 0.1.

! b) RNG model; contour levels from -0.4 to 1.0 in intervals of 0.1.

¢) RNG model; 36% area reduction; contour levels from -0.4 to 1.0 in intervals of 0.1.

173




A0 | N95- 27357
/75 /3653 F

NUMERICAL SOLUTION OF FLUID FLOW AND HEAT TRANSFER PROBLEMS
WITH SURFACE RADIATION . //A%?/
o /’ - j“ '1 ~

S. Ahuja and K. Bhatia ‘ ,
Engineering Mechanics Research Corporation W

Troy, Michigan - ‘)y
i

This paper presents a numerical scheme, based on the finite element method. to solve strongly coupled

SUMMARY

fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is
considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The
overall solution strategy is verified by comparing the available results with those obtained using this
approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is
clearly explained.

INTRODUCTION

There are many engineering applications in which a coupled analysis of fluid flow and heat transfer
is desired. Among a large list of such examples, a few important ones are design of heat exchangers. cooling
of electronic components, climate control and underhood analyses in automobiles, performance of industrial
furnaces, heat transfer analysis in confined cavities, and, cooling and heating of buildings, etc. The fluid flow
analysis generally requires solution of conservation equations of mass and momentum. Several numerical
approaches are available (refs. 1 to 4) under a variety of boundary conditions. In heat transfer studies usually
energy conservation involving all three modes (namely, conduction, convection and radiation) is expected.
However, until recently, conduction and convection heat transfer modes were accurately accounted for while
approximations were made for including the radiation analysis (ref. 5). The high nonlinearity involved in the
basic theory precluded from obtaining analytical solutions and a use of ordinary numerical methods for
practical problems. The availability of cheaper computer resources has caught the attention of researchers
wanting to include accurate radiation analyses in their studies. This is reflected in a collection of papers
included in (ref. 6) published recently.

The aim of this paper is to present a numerical methodology for analyzing fluid flow and heat transfer
problems (including all three modes). A brief account of numerical solution of Navier-Stokes and continuity
equations using the finite element method is presented. The assumptions involving the heat transfer via
radiation include non-participating fluids and gray, diffuse surfaces based on enclosure theory (ref. 8).
Solution of strongly coupled (heat transfer and fluid flow) phenomenon with natural convection is
demonstrated through a couple of examples. To benchmark the developed code. a comparison with the
already reported results is made. This is followed by a discussion of results in an analysis involving a study of
thermosyphon (ref. 9). a passive system used for cooling of electronic components.
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GOVERNING EQUATIONS

In this section. the basic equations associated with the fluid flow and heat transfer are discussed.
Generally, it suffices to consider the conservation of mass, momentum, and energy in the given domain of
interest. In the presence of surface radiation, additional equation representing the conservation of radiative
energy must also be considered. The effect of radiative fluxes on the relevant surfaces must be reflected in the
overall energy balance. In summary, the following equations must be solved to conserve mass, momentum,
energy, and radiative energy:

conservation of mass:

duk _ (1
oxx
conservation of momentum:
ou  ow|__op, & (ow ow), o oo )
p[ ot +uk6ka_ OXi * OXi [“(axj * 8xiJ] +pgi [1-B (T-Tp)]
conservation of energy:
or . or|_ 9o ,4r 3)
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For explanation of the symbols employed, refer to the section titled Nomenclature. It should be noted that
Equations (1) through (3) are used for incompressible fluid flow with Boussinesq approximations invoked to
model the natural convection phenomenon.

conservation of surface radiative energy:
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In deriving Equation (4), it is assumed that the surfaces are gray, diffuse and isothermal (ref. 8). The view
factors, Fij, between surfaces i and j, appearing in Equation (4) must be computed when attempting the
solution of this equation. In the next section. a discussion on view factor calculations is undertaken.
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COMPUTATION OF VIEW FACTORS

In order to compute gr’s (in Equation (4)), view factors Fij, between all radiating surfaces must be
available. In this section, the physical meaning of viewfactor and its calculation will be discussed. For a
better understanding, i,j in the above equation can be replaced with 1 and 2. Thus. view factor. F1-2, between
two arbitrary surfaces (see Figure 1), ‘1” and ‘2’ is defined as a fraction of diffuse radiant energy leaving
surface ‘1° that arrives at surface ‘2°. Mathematically,

] J' j Cos 01 Cos 62 (%)

Fi2 = —
Al “Al "A2 7 ri2

dA1 dA2
where A and A are the areas of surfaces 1 and 2, respectively, r12 is the distance between the two elemental
areas dA| and dA2, 91 is the angle between the position dependent normal vector mand the line connecting
dA1 and dA2. Angle 02 is defined in a similar way. It must be noted that Cos 81 and Cos 82 must be positive
in order for the surface dA| and dA2 to “see’ each other. If either of the cosines has a negative value, the
corresponding view factor, FdA,-dA; should be set to zero. Such cases, in which the inactive side of the
radiating face acts as an obstructer, will be termed as “self-obstruction’ cases. Also, view factor F1-2 should
be set to zero, if a third surface obstructs the view between surfaces 1 and 2.

In order to calculate view factors internally, the user must specify the radiation surfaces in terms of the
finite element faces of a discretized domain. The user must also specify which of the two sides is a radiatively
active side. These pieces of information can be supplied very easily via the already existing card in the NISA
file of NISA/3D-FLUID. Each radiating face is taken as one radiation surface. View factors between the
radiating surfaces are automatically generated by NISA/3D-FLUID taking into account self-obstruction and
obstructions due to a third surface.

As can be assessed from the preceding discussion. computing view factors can result in usage of
excessive computer time. To economize this computation. different techniques are used depending on
whether the geometry being analyzed is 2D, 3D or axisymmetric. For example. double area integration
method (ref. 8) is employed in comparison with contour integration method (ref. 8) when a 3D geometry, with
radiation surfaces, is being analyzed. No special directives are required when computing view factors for
- axisymmetric geometries. NISA/3D-FLUID internally generates a complete 3D model (with the axis of
svmmetry as the X-axis [NISA/3D-FLUID])) to calculate the required view factors. Furthermore. for 2D
problems, a completely different approach, called Hottel's crossed-string method (ref. 8) is employed for its
- computational efficiency and accuracy. Reference 8 provides more details for evaluating view factors for
interested readers.

FE FORMULATION & SOLUTION PROCEDURE

The partial differential equations (Equations 1 through 3) and the radiative balance equation (Equation
| 4) are to be solved simultaneously to account for the fluid flow and heat transfer analyses in a given domain
with specified boundary conditions. The convective terms appearing in Equations (2) and (3). simultaneous
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solution of Equations (3) and (4), and arbitrary geometries encountered in most practical problems would
require numerical tools for obtaining solution to coupled Equations 1 through 4. The Galerkin method in
conjunction with the finite element method (ref. 8) form the basis of discretizing Equations | through 3. The
penalty approach (ref. 3) is employed to eliminate the pressure from Equation (2) making use of Equation (1).
For further details, refer to (refs. 3 and 10). The discretized form of Equations (2) and (3) can be written in
matrix form as follows

[K] {X} = {f} (6)

where Kij is the "stiffness" matrix, consisting of contributions from acceleration. diffusion and pressure
gradient terms of Equation (2) and acceleration and diffusion terms of Equation (3). Xj represent [U, V, W ]
for momentum equations and [T] in the case of energy equation. The vector fj is discussed more at length as
this contains coupling terms in Equations (2), (3), and (4). For example, the vector {f} for the momentum

equations is

- J N/ pgiB(T—T[})dQ+Ier(.—PSij-!-‘tij)nde (7
Q

Equation (7) indicates the influence of temperature distribution on the momentum equations while convective
terms (included in Kij for Equation (3)) represent a dependence of the temperature field on the velocity

distribution.

Furthermore fj for the energy equation consists of the following term:

(8)
=] NQda+ [ N'qdr
Q r
where
9
q=Qqa+ qc+ qr
In the above equality, qa, gc, and gy refer to the applied heat flux, effect due to convection boundary
conditions, and that due to radiation on the boundary , respectively. The gray-body radiative effects can be
considered via qr which is evaluated using Equation (4) for a "known" temperature distribution. It is thus
evident that Equations (3) and (4) are coupled via qrand T. Far a complete enclosure. Equation (4) can be
represented in the matrix as
(10)

[RI{ar} = [SI{T}
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where

) . (11)
& |-
Rij = 2. [;i - sje‘ Fijj

and

N (12)
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j=!

Ideally Equations (6) for momentum and energy equations together with the radiative balance Equation (10)
must be solved simultaneously. For practical reasons (computer memory and time, and nonlinearity in
Equations (6) and (10)), a sequential approach is undertaken to solve these algebraic equations. Depending on
the nature of coupling (strong for flows with free convective effects and weak for flows with forced
convective effects), momentum, energy, and radiative balance equations are solved. For more details, refer to
(ref. 10). It has been observed that gr (and hence T) solution may not converge or may do so slowly. An
under relaxation of qr leads to its stabilization. This is achieved as follows:

gl =aq*' + (1-a) g (13)

where o is a user-defined relaxation factor. During a calculation sequence convergence checks are performed
for velocity, temperature and surface flux, qr, distributions by evaluating the L2 norms. The sequential
calculations are performed until the L2 norms of all the nodal variables and surface radiation fluxes fall below

a user-defined tolerance.

Special Cases:

There are a few special cases which require a slight modification to the above methodology for
including the gray surface radiative effects in the heat transfer analysis. These are as follows:

a) Domain with plane(s) of symmetry

b) Exchange of radiative flux through "windows" in the domain

c¢) Exchange of radiative flux between the domain and surroundings
d) Radiative surfaces with no thickness.

The details of these modifications are presented in (ref. 10).
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ILLUSTRATIONS

The aim of the present paper is to discuss an efficient solution strategy that must be undertaken to
solve coupled fluid flow and heat transfer problems in the presence of radiative energy exchange between
gray surfaces in a domain of interest with specified boundary conditions. In the previous sections, the
pertinent differential equations and their respective discretized forms (using the finite element method) are
discussed. In this section, a discussion of the results obtained with the outlined procedure for a couple of
problems is undertaken.

Example 1: Natural Convection with and without Surface Radiative Effects in a Cavity.

The validation of the developed procedure is established by solving a problem studied by Behnia et al.
(ref. 11). The fluid flow due to natural convective effects in a square cavity with radiating surfaces is
considered. Figure 2 shows this cavity of a characteristic dimension, L and the specified boundary conditions.
The top and bottom walls are adiabatic. The left wall is maintained at a uniform hot temperature, Th. The
right wall has convective and/or radiative boundary condition. The convective heat transfer coefficient is h.
The temperature of the surroundings and the ambient temperature are taken to be T. All the internal surfaces
of the cavity have an emissivity of 0.9 and the fluid in the cavity is air. The cavity size, L, can be chosen to
get a Rayleigh number of 3x10°. Table I shows a summary of conditions under which each case is analyzed
with an aim of obtaining steady state temperature and fluid flow distributions in the cavity. Due to the
presence of natural convective effects, strong coupling between the fluid flow and temperature fields is
expected. The cavity is discretized into a graded mesh of 44 x 36 linear quadrilateral elements. The steady
state algorithm of the code is invoked. Table 2 shows the relaxation parameters employed for each of the run
detailed in Table 1 and the corresponding numbers of iterations required to obtain converged solutions.

Figure 3 shows the isotherms obtained for the cases denoted as R300, EC300, and REC300. A
comparison of isotherms for these cases clearly indicates the effect of surface radiation on the adiabatic walls
(top and bottom), the isotherms are no longer normal to these walls. Figure 4 shows the streamlines for the
cases R300, EC300, and REC300 respectively. Table 3 shows a comparison of the maximum value of stream
functions obtained for these runs with those listed in Behnia et al (ref. 11). A good quantitative agreement
between the results is evident. Figure 5 shows the horizontal velocity along the vertical center line for these
cases. The velocity profiles shown in the figure compare well with those in Figure 7 of ref. 11.

Example 2: Analysis of a Planar Thermosyphon.

In this example. the fluid flow and temperature distributions are studied in a thermosyphon including
the surface radiative effects. A thermosyphon is a device used for cooling of electronic components, heat
removal systems for nuclear reactors, and having applications in solar systems (ref. 9). Since thermosyphons
involve no blowing or pumping of fluids, they are less expensive and more durable (termed as passive
systems) as these do not require external signals for operation. A schematic of planar thermosyphon and the
assigned boundary conditions is shown in Figure 6. An analysis of fluid flow and heat transfer in a
thermosyphon is presented in (ref. 9) without the surface radiation effects. These effects have been included
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in the study here. All the walls are black and are considered to be radiating. By observing the radiation
surfaces in Figure 6, it is evident that all the surfaces cannot "see" each other. In other words, the view
factor computation, in the presence of third surface obstructions, is invoked. These computations are more
complex and handled efficiently in NISA/3D-FLUID (ref. 10).

First, the results are presented for the case in which only the convective effects (due to natural
convection) are considered. The same analysis is performed in (ref. 9), in which the effects of varying the
Rayleigh no. and a ratio of thermal conductivities of solid to fluid are considered. Therefore for the sake of
comparison, results are presented for a Rayleigh no. of 10* and a ratio of thermal conductivities of 1 (see (ref.
9) for more details). Figure 7 shows the stream function distribution for this case and the corresponding
isotherms are shown in Figure 8. A good agreement between these results and those presented in (ref. 9) is
observed.

Now, the surface radiation effects due to the surfaces shown in Figure 6 is considered. The results
for this case are not presented in (ref. 9). Figures 9 and 10 show distributions of stream functions and
isotherms. A comparison of isotherms shown in Figures 8 and 10 indicate a considerable difference in their
distributions. A further comparison of the velocity distributions, Figure 11, at "inlet" and "outlet" of the
thermosyphon show marked differences. The difference in these velocity distributions amounts to a
difference of 25% in flow rate. This analysis clearly indicates that if the surface radiation heat transfer is not
accounted for, inaccurate distributions of temperatures and velocities may result.

CONCLUSIONS

A numerical scheme based on the finite element method is presented for solving coupled fluid flow
and heat transfer problems in the presence of surface radiation. A sequential solution of momentum, energy
and, radiative energy equations is considered for efficient computer memory management and disk usage.

The computed results validated the numerical procedure adopted for an analysis of coupled fluid flow and
heat transfer phenomena. The results presented compared well with those reported in literature. It is shown

~ via the resuits discussed in this paper that the surface radiative effects must be considered for a compiete heat

~ transfer analysis. More research is underway to extend this work to consider non-gray surfaces and eventualiy
participating fluids.
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NOMENCLATURE
C = Specific Heat q = Heat Flux
g = Gravity Force r = Spatial Coordinate
k = Thermal Conductivity F = View Factor
P = Pressure t = Time
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= Volumetric Source a,Y,0 = Relaxation Parameters
= Radiation Matrix, LHS p = Density
= Radiation Matrix, RHS B Coefficient of Volume Expansion
Temperature € Surface Emissivity
Velocity ) Kronecker Delta
Forcing Function o Stefan-Boltzmamn Constant
Generalized Vector Nodal Unknown  Q Domain
Shape Functions r Boundary of the Domain
= Stream Function T = Fluid Stress
Subscripts
= Reference Temperature r = Radiative
= Spatial Index, Surface No. i = Spatial Index, Surface No.
= Applied Externally s = Surroundings
= Convective
Superscripts
= Nodal Index i = Iteration No.
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Table | Summary of Three Different Runs

Run Ra B.C. on the right wall Surface Radiation
REC300 300,000 Convective + radiative included
EC300 300,000 Convective not included
R300 300,000 Radiative inciuded
2 - 3
Ra = Grpy = L8EQTIL  Cou
u
Table 2 Relaxation Parameters and Number of Iterations
Run Relaxation Parameter No. of iterations
Velocity Temperature Radiative heat
a Y flux
o
REC300 0.04 1.0 0.1 64
EC300 0.04 1.0 0.1 40
R300 0.04 1.0 0.1 68

Table 3 Values of |¥'|max for Different Runs

Run 9 Imax= e B!(c—,,
Behnia et al. NISA/3D-FLUID
(ref. 11) (ref. 10)
REC300 13.04 12.94
EC300 10.93 11.01
R300 11.93 11.79
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SINGLE-DROP REACTIVE EXTRACTION/EXTRACTIVE REACTION WITH FORCED
CONVECTIVE DIFFUSION AND INTERPHASE MASS TRANSFER

Leonid S. Kleinman and X.B. Reed, Jr. L
University of Missouri-Rolla - )3 - 3 7/
Rolla, Missouri

SUMMARY

An algorithm has been developed for the forced convective diffusion-reaction problem for
convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the
droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The
concentration field inside the droplet is likewise coupled with that outside by boundary conditions
at the interface. A chemical reaction can take place either inside or outside the droplet or reactions
can take place in both phases.

The algorithm has been implemented and results are shown here for the case of no reaction
and for the case of an external first order reaction, both for unsteady behaviour. For pure interphase
mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet
concentrations have been obtained as a function of the physical properties and external flow field.
For mass transfer enhanced by an external reaction, in addition to the above forms of results, we
present the enhancement factor, with the results now also depending upon the (dimensionless) rate
of reaction.

INTRODUCTION

There are many industrial and environmental processes in which two-phase fluid-liquid
systems are in use. Gases may be dispersed as bubbles in liquid phases, such as occurs in bubble
columns and sparged vessels. Liquids may be dispersed in gases, such as occurs in scrubbers. And
a liquid that is immiscible or partially miscible in another liquid may be dispersed in a liquid-liquid
spray column extractor or reactor. The design of such systems may involve heat transfer, either
intentionally or incidentally, but the widest range of applications involves mass transfer. Interphase
mass transfer may proceed into or out of the dispersed phase. One (or more) chemical reaction(s)
may take place in either the dispersed or the continuous phase in order to enhance the rate of mass
transfer. In two-phase reactions, certain of the reactants may be transferred from one phase into
the other, where the reaction takes place, and the reaction products may then be transferred back
into the first phase. Reactions may also occur in both phases.

Because of the finite, generally small volume of each drop or bubble, interphase mass transfer
unaccompanied by chemical reaction is inherently unsteady, regardless of the direction of mass
transfer. Even if there is a reaction that admits of a steady state in the drop or bubble, unsteady
behavior may nevertheless be of practical even primary importance.

The continuous phase is inevitably in motion relative to the dispersed phase, and for clean
systems (containing no surface active agents), the motion in the two phases will be hydrodynami-
cally coupled.

189



We undertake here for concreteness a liquid-liquid system in which a chemical reaction may
take place in either or both phases. The dispersed phase is sufficiently dilute that the droplets
which sediment (either falling under their weight or rising because of buoyancy) may be assumed
isolated in an infinite medium, both with regard to fluid mechanics and to diffusion and reaction.
The droplets are taken small enough that interfacial tension dominates shape effects and they are
spherical. Although the approach we take and the methods we use do not require that that viscosity
dominates flow effects and that the velocity fields have low Reynolds numbers , we consider the
hydrodynamically coupled Hadamard - Rybczinsky profile for circulation within the droplet driven
by an external velocity field that becomes a uniform streaming flow far from the droplet. Physi-
cal and chemical properties are assumed constant, which would be the case for dilute isothermal
systems, and we thus analyze interphase mass transfer for the forced convective diffusion-reaction
single-drop system. We investigate, specifically the roles of the reaction rates, as measured by
appropriate Damk&hler numbers, the solubility of the solute in the phases, as expressed by the
linear distribution coefficient (Henry’s law), the ratio of convection to diffusion, as measured by the
Peclet number, and the ratio of the viscosities and that of molecular diffusivities of the two phases.

GOVERNING EQUATIONS

The dimensionless forced convective diffusion-reaction equations governing the solute con-
centrations in the drop (0 < 7 < 1) and the continuous (1 < r < oo) phases, 1 = 1,2, respectively,
can be represented in the form

@O N L
% + KOv0.7e0) = kv20 _ kO (1)

where i = 1 corresponds to the internal domain 0 < 7 < 1, and ¢ = 2 to the externalone 1 < r < oo.

The dimensional partial parabolic differential equations have been rendered dimensionless
using the droplet radius R as the characteristic length scale. The concentrations are measured in
units of initial driving force,

) = HO ) — Héy

EO—HEoo ) 7'=1’2a (2)
in which
. 1, 1=1
B = (3)
H, 1=2,

with H the Henry’s "law” distribution coefficient.
The characteristic time scale can be selected, for example, on the basis of the fastest physical
or chemical process, occurring in the system, viz.,

T, = min(‘ré;zw , Tgf)f , 7',(21 , 1=1,2), (4)
in which
2
, W __ R o _ B 5_ 1 .
Tconv - f(')(ﬂ) Um; Td;ﬁ' - D(")) Trxn - k("')’ 1= 1,2 . (5)
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The diffusivities and rate constants for the first order chemical reactions are denoted by D) and
k() respectively, and the K’s represent different combinations of standard dimensionless parameters
for different choices of 7., as indicated in Table 1.

Although our numerical implementation of the algorithm requires only that the velocity
fields in the two phases be separable, for concreteness we have used the Hadamard - Rybczinsky
solution for the convecting velocities in the dispersed and continuous phases. In this instance, the
characteristic velocity in each phase, with Uy, the freestreaming uniform flow at infinity, is taken
as

¥ = fO(u) Vs, i=1,2, (6)
in which
M) = — (2)(y) =1
W) = gy T ()
with the viscosity ratio
p=pMu® (8)

The equations (9) are the ones used in the sequel, reflecting the selection of Tgf)f as the unit
of time: :

i i (¥) i
aC( ) + Pe(z) . (v(.-) Bc( ) _ i\/l—-—ﬁaac;)>
2 T T

or or
DO (19 dcld) 18 dc)
=3<z‘>'{rza (”T»)*“:f:ﬁ =27 } (©)
_ <-'>2‘L’.(u> _H'-‘g_) .
Da”D(z) e+ - His)' 1=1,2,

with A = cos?, subject to the boundary conditions at the droplet interface,

c(1) = £(2)

r=b (1) (2) (10)
ac\t) _ dc
H-D 5 ="5r
and at the limits of the overall domain,

r=0: <o (11)
T — 00 ) BNy (12)

Periodic boundary conditions in angle variable
lal 0, i=1,2 (13)
YR =V, 1=1,4 13

a9 9=0,x

after introduction of the new independent variable X are satisfied automatically.
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The concentrations are subject to the initial conditions:

t=0: cW=1 =0 (14)

The actual direction of mass transfer may be out of or into the drop, depending upon the
driving force (o — Hés ), even though the formulation of the problem suggests transfer from the

droplet.
The opposite direction of mass transfer in the actual problem would lead to the appearance

of the inhomogeneous part in the reaction terms in (9) (but only when the corresponding % #0).
THE ALGORITHM

The problem is linear, and we use the Galerkin spectral method for the spatial discretization.

The advantages of this method are well known [1, 2].
We express the unknown functions ¢(*)(7, ), 7) in a customary manner,

M
(A r)= S (r,r) Pa(}), i=1,2, (15)

m=0

in which the P, () are the Legendre polynomials of order m and the coefficient functions c (T r)
are termed “radial functions” for brevity in the sequel.

The discretization in the radial direction is performed in somewhat different ways for the
internal and external domains.

Using Equation (9) for mass transfer inside the droplet (i = 1), it is a simple matter to

show that functions cs,l.)(-r,r) obey the following restrictions :

MNrr=0)=0, 1#0 (16)
Bcfl)
or r=0 - 0, l # : (17)

cg‘)(r, 7) - even function of r
k=0,1... (18)

Cgk)+1(7'a r) - odd function of »

On the basis of these restrictions, the radial functions inside the droplet were approximated
by a series in even Chebyshev polynomials:

N
(r,r) = mo- ao(T) + 7Y ¢ (T) Tana(r), m=0,1,...,M (19)
n=1

in which the T,(r) are Chebyshev polynomials of the first kind of order p, and

K2j =2, j=0,1,... (20)

K1 = 1, K241 = 3, J = 1,2, e (21)
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Using (19) we automatically satisfy boundary condition (11), avoid the singularity at the
origin of the drop, and the function ag(7) represents the value of the concentration at the origin.

Such an expansion on the interval 0 < » < 1 is valid as the even Chebyshev polynomials
form a complete set for the type of functions considered [10].

The use of half the commonly used interval [-1, 1] permits us to double the highest order
of the polynomials used, leaving the number of terms in the series unaltered.

The nonuniformity of the distribution of nodes in the spectral method (their number in
close proximity to the surface is higher than near the origin) matches the physics of the problem
as the concentration gradient near the interface is much bigger.

For the semi-infinite external domain we implement the widely used procedure of truncating
it at an appropriately large radius 7, far enough from the interface to make the disturbance
introduced negligible. The boundary condition at infinity (12) is now imposed on this artificial
boundary. It could be imposed as "hard”, "soft” [12] or "behavioral” [1, 13]. We use the "hard”
one,

T=re: =0 (22)

because it immediately results in original boundary condition (12) if 7o — 00.

It is necessary to realize that by doing this we are changing the physical sense of the problem.
The decrease of the concentration to zero infinitely far from its source is caused physically by the
spreading the species over an infinite spatial volume. After introduction of the boundary sphere
at 7 = T, Wwe model this decrease by imposing what amounts to an infinitely fast heterogeneous
reaction on the artificial boundary r,,. The only justification for this is an a posteriori one, viz.,
by checking that the increase of r, does not alter the solution in the vicinity of the droplet and in
particular the interphase mass transfer.

Our computations have confirmed this and show that when r., is chosen sufficiently large
the choice of the particular type of boundary conditions mentioned above does not influence the
resultant concentration distribution in regions where its value differs significantly from zero.

The domain 1 < r < 7 is mapped onto the interval —1 < z < 1 in such a way that the
point z = 1 matches » = 1 and the point z = —1 matches r = r,,. Among the wide variety of
possible mappings two are used more often than others, the exponential and rational ones ({1, 2]).
A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages
over the former.

Specifically, we use

r—(144)

- 20 ) _
(-n(1-72) -9
where 6 is the parameter representing the distance between the droplet surface and point mapped
into z = 0. It is worth mentioning that we have also implemented the exponential mapping and

could find no advantages for the rational mapping over it.
The radial functions in the external domain are expanded as

zZ=

) (23)

N(2)
CS:)(T’ Z) = Z ¢5125,)n(7.) Z"(Z)1 m= 0) 1, RS M: (24)
n=1
where the Z,(z), n=1,2,...,N (2) are linear combinations of Chebyshev polynomials, each satis-

fying the boundary condition following from (12):
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Za(z=-1)=0, n=12,...,NO, (25)
We take

Za(2z) =Tu(z)-1 (26)

Zak-1(2) = Taea(2)+1

Thus, we reduce the system of partial differential equations for two initially unknown func-
tions ¢(!)(7, A, 7) and c(®)(7, A, ) to a larger system of ordinary differential equations in 7, for

ao(1), $ah,, 88, m=0,1,..., M, (27)
n=12... ,NU n,=12.. N3

The total number of these unknown functions is 1+ (M + 1) (N() + N(?)).
In order to obtain equations for these functions we use the conventional Petrov — Galerkin
method, i.e., the basis functions are taken as the test functions [2]. We define two inner products:

. (f:g)(l)ELII 2 /olf'g%1 (28)

1
(ro)@= [ o [ f9ims. (29)

Forming by (28) the inner product of (9) for ¢+ = 1 with the test functions

Po(A)To(r), Pm(A)r™ Top,—2(r), m=0,1,....M, m = 1,2,...,N®O 1 (30)
and by (29) the inner product of (9) for i = 2 with the test functions

Pm(A) Zny(2), m=0,1,....M, np=1,2,..., N®_1 (31)

we obtain two vector equations

. (¥) . . . . . . ) N
A®) d_zr_ - (_th) B + .K‘(;) BGd) _ KS:) B(i.f)) . 4,(1) + K,(.') b , 1=1,2. (32)

Here A(9), B("c), B(4d), B67) are {1+ (M + 1)(N®) - 1), 1+ (M + 1)N()} matrices,
b() — {14 (M + 1)N(®)} are the vectors of inhomogeneous terms, and ¢{)(1) — {1+ (M +1)N()}
are the unknown vectors,

$O(T) = (@0, 85+ Bokiars -2 s+ By )T (33)
o@(r) = (¢&),.. BN a1 B B )T (34)

The remaining 2 (M + 1) equations are derived from the boundary conditions (10) which
are implemented by the Lanczos tau-method (1, 2, 14].
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Upon substituting (19) and (24) into (10), multiplying by Pm()), m =0,1,..., M and
integrating A from —1 to 1, we obtain two sets of M+1 linear algebraic equations:

Q.41 = Q(@).4(2), (35)

H.D-sW.40) = (.4 (36)

where QU), S() are {(M +1), (M +1)(1+ N())} matrices, i = 1,2.

By expressing ¢Srlt.)N(‘) and ¢':’)N(,), m = 0,1,..., M, using the system (35)-(36) and
substituting in the system (32), we arrive finally at the system of 1 + (M + 1)(N() 4+ N() - 2)
linear ODEs:

A‘—?;_— = (B©) + B@ + B(").¢ +b. (37)

The constant matrices B(9), B(%) and B(") correspond respectively to the convective,
diffusive and reactive terms in the original equation (9), b is an {1 + (M + 1)(N() 4+ N(2) _ 2)}
constant vector and ¢ (7) is the vector of unknown functions

2 2 .
¢ = (a0, 860 Fonrop B Fope B B Bhtns B )T (38)

and not simply a concatenation of vectors ¢ (1) and ¢ .

The matrices A, B(# and B(") are block-diagonal. They all have M+1 nonzero square
{NW4N@ -2, N4 N -2)} matrices on their main diagonals and their first 1+(N )+ N(2)-2)
elements in the first row and the first column are nonzero.

The matrices B(¢) that result from transforming the convective terms also have block struc-
ture with the same block sizes. However, they are no longer block-diagonal and the amount of
nonzero block-diagonals depends on the velocity fields v, i = 1,2. The higher the degree of
A that is involved in the velocity field expressions, the greater the coupling between the radial
functions of different orders will be. And the increase of the order of this coupling leads to the
corresponding increase of the number of nonzero block diagonals in B(<).

For the Hadamard — Rybczinsky field, for example, these matrices will be block-tridiagonal,
and for the velocity field in [15] valid for higher Reynolds numbers, block-pentadiagonal.

The discontinuous initial conditions (14) are not appropriate for computations. Instead
we used the analytical solution for the pure diffusion case (no convection, no chemical reaction)
derived in [16]. The concentration distributions for very small time values were expanded over our
basis functions Ton—2(r) and Z,, n = 1,2,... to initialize the computations, and the coefficients
obtained were used as initial conditions for ao(7), ¢$,1.,),,1 , and ¢S,f,)n,, m=0,1,.... M, n =
,2,....,NO -1, n;=12,...,N® -1,

For time discretization of the system (37) we use the first-order backward Euler method.
Defining ¢™ as vector ¢ at the n-th time step of magnitude A7 and

system (37) can be rewritten as
(A - ATB)-A¢™! = ArB-¢" + Atb, (40)
where
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A¢n+1 - ¢n+1 _ ¢n. (41)

Every time step system of linear equations (40) was solved by regular Gauss elimination
(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the
left side of (40) has the same structure as matrix B; as mentioned above, it is block-tridiagonal
for the Hadamard-Rybczinsky velocity field. Our attempts to apply block-elimination methods (in
particular, block Thomas algorithm [4]) failed presumably because block LU factorization does not
involve pivoting which is essential when diagonal dominance does not occur (which is the case for
high Peclet numbers).

We considered the matrix on the left side of (40) as a banded one with bandwidth 1 +
3(NW 4 N —2).

As long as this matrix depends on the time step and its factorization is a time-consuming
process, only two values of the time step were used for each run. A smaller one was used for an
initial time period and an another one for the subsequent time range.

The numbers of terms in series (15), (19), and (24) depend on the steepness of the con-
centration gradients and were different for different values of Peclet and Damkdéhler numbers. The
maximum numbers used were M = 87, N(}) = 25 N(2) = 97,

As is well known {1, 2], an increase in the number of terms in a spectral series (especially
in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting
system of linear equations. This was alleviated by using double precision in all computations and,
as mentioned above by application of the iterative refinement to the solution obtained with the
Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-
tracted by particular instant in time. For the problem under consideration (i.e. when species are
extracted from the droplet) this can be conveniently characterized by the time-dependent average
dimensionless concentration of species remaining in the drop:

1 1
) = E./ / r2c)(r, A7) dXdr (42)
2 Jo Ja

This quantity changes in time as a result of mass transfer out of the droplet. The local and
surface average rates of this transfer are characterized by corresponding mass transfer coefficient,
the quantities which when multiplied by the driving force give respective mass flux rate. The
nondimensional mass transfer coefficient is usually referred to as the "Sherwood number” which is
analogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force upon
which it is based and the domain to which it is related.

For the problem of single-drop extraction, the instantaneous driving force for mass transfer
is the difference between the concentration of the transferring species in the droplet and that far
away from it, taking into account the step change of the concentration at the interface due to
solubility,

Flan) = 71 _ Héy, (43)

where &) is the dimensional average concentration of species in the droplet.
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Often the Sherwood number is based on the maximum possible (or in our case, initial)
driving force:

Fi%) = gy — Héoo . (44)

~ Here we consider only the external Sherwood number, i.e., the nondimensional rate of
transfer of species from the external side of droplet surface into the external flow.
The local and average Sherwood numbers defined on the basis of maximal driving force are

respectively:
(2)
Shigeo = —2H-D a; (45)
‘ T r=1
| =
" and
| 1 52
Sho=-H-D dX. (46)
-1 67' r=1
Corresponding values based on instantaneous driving force are:
Shloc 0
Shloc = - ) 47
1) 4 2o H/FS™) (47)
Sh
- (48)

h= .
&) 4 g H/FS®

Obviously, the chemical reaction in the external region increases the rate of the extraction,
and this increase is characterized by the enhancement factor, which is the ratio of the corresponding
mass transfer rates [5]:

Sh(Da) # 0
e Sedhnd § S S
5 ; 0 )
Sh(Day; =0)

COMPUTATIONAL RESULTS AND DISCUSSION
The results of the computations presented cover the following ranges of parameters:

025<D<4,
0 < Pe® < 500,
2
0 < Da$? < 1000,
H=u=1.

The characteristic time scale was chosen as

| T =g (50)
; which is just the Fourier number based on the diffusion coefficient of the external fluid. The times
appearing on the plots are expressed in these units. The values of Peclet number Pe and Damké&hler

number Da presented on the plots correspond to Pe(?) and Da(l"}) , respectively.
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To illustrate qualitively the process of pure mass transfer (no reaction) from the droplet we
present in Figures 1-3 the curves of constant species concentration at different times for various
levels of external convection (Pe(?) = 10, 200, 500 respectively).

The well known and intuitively expected increase of mass transfer with increasing convection
is apparent.

The influence of internal circulation on the development of the mass transfer process is
illustrated in Figures 4-5 where we present the isoconcentration curves for the same external Peclet
number (Pe(?) = 500) and different ratios of internal and external diffusivities (D = 0.25 and
D = 4.0).

For D = 0.25 the internal convection is much stronger in the sense that the value of Pe(1)
is larger. As a consequence the isoconcentration curves inside the droplet lie close to the internal
streamlines, a result already obtained numerically by Johns and Beckmann [7], for the special case
of mass transfer resistance solely inside the droplet. The coincidence of internal isocontours with
internal streamlines also constituted the basic assumption of Kronig and Brink’s model of mass
transfer in a circulating drop [6]. From a simple comparison of the isocontour levels in Figures 4
and 5 alone one infers that the mass transfer from a droplet for D=4 is much more intensive than
for D=0.25. The reason that the internal Peclet number Pe(1) is greater for D = 0.25 is not that
the internal circulation is greater, for it is not (x = 1), but that the internal diffusivity is smaller.
Nonetheless, it is customary for brevity to describe an increase in Peclet number as an increase
in convection, rather than the more lengthy but more accurate increase of the ratio of convection
to diffusion. In this usage, one may phrase the conclusion drawn from Figures 1-5 as follows:
convection outside the droplet increases the rate of extraction but inside convection supresses the
rate of transfer.

The influence of the external reaction rate on the concentration distribution is shown on
Figures 2, 6 and 7. As could have easily been anticipated, an increase in Da(Izj) results in faster
extraction and an almost immediate disappearence of extracted species outside the droplet (almost

no species here for Da(f,) = 100 in Figure 7).

Figures 8 and 9 show the effect of reaction rate on the local Sherwood number. The values
of Shieco go to zero with time for all values of angle variable ¥, although the distribution of
Sherwood number based on the instantaneous driving force approaches a nonvanishing asymptote.
An increase in the reaction rate thus results in a general increase of mass transfer and of values of
the Sherwood numbers, but the temporal variation of values of local Sherwood numbers at different
locations is less transparent, warranting further investigation.

Figure 10 reflects the behavior of average Sherwood number Sh in time for different values of
external Peclet number Pe(?) for the no reaction case. The oscillations of Sk were computationally
obtained by different investigators including mentioned above Johns and Beckmann’s article [7]
and Oliver and Chung in (9], who were solving conjugate unsteady heat trasfer problem which
is mathematically analogous to the mass tranfer problem under consideration when there is no
chemical reaction involved. These oscillations are caused by the internal circulation with the most
detailed physical explanation given by Brignell in [8]. Consequently the period of these oscillations
is smaller and the amplitute greater the higher the Peclet number is. The stronger convection also
leads to a higher mass transfer rate as it creates the thinner diffusion boundary layers on the both
sides of the droplet surface.

Figure 11 illustrates the influence of the rate of external chemical reaction on the average
Sherwood number. The plots here confirm the made above conclusions of the increase of the rate
of extraction with the increasing external convection and rate of external chemical reaction.

In more evident way this is reflected in Figure 12, where the decrease of average droplet
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concentration with time is presented. From this picture we can also deduce a very important
conclusion that an increase in the reaction rate over some value will not benefit the extraction
results (the diffences between the average droplet concentration for Da(ﬁ) values of 300 and 1000
are pretty small).

Figure 13 shows the effect of reaction rates on the values and time behavior of the enhance-
ment factor E. The oscillations here are the consequeces of the internal circulation, the same as
for corresponding average Sherwood number on Figure 10. The values of E corresponding to the
same reaction rate are higher for smaller Pe(?) (lower convection). The possible explanation for
that could be that the corresponding values of Da(lz) which are just the ratios of Da(lzf) and Pe(2)
are smaller for higher Pe(?).

Finally, we wanted to underline that the purpose of this article was to present the developed
numerical algorithm and to show what kind of results can be obtained. Our further articles will
include additional results and more detailed analysis of those results as well as of the results
presented in this article.
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NOMENCLATURE

-dimensional value of the concentration in the origin of the droplet at t = 0
-dimensional value of the concentration at the infinity
-dimensional concentration in the i-th domain, i = 1,2
-dimensionless concentration in the :-th domain, 1 =1,2
-molecular diffusivity of the solute in the fluid in the i-th domain, 1 = 1,2
-molecular diffusivities ratio, D(1)/D(2)
-first Damkohler number in the i-th domain , M 1=1,2
f(')(;l) U"° 3 y
-second Damkdhler number in the :-th domain, kg(‘.)z, 1=1,2
-enhancement factor
-factor showing the leading viscosity ratio dependence of the
velogity scale in the i-th domain, : = 1,2
-distribution coefficient
-chemical reaction rate constant in the ¢-th domain, 1 =1,2
-highest order of the Legendre polynomials used in the expansion
in the angular direction
-number of terms in the expansion of radial functions in the i-th domain ,i=1,2

-Peclet number in the ¢-th domain, %‘87@, i=1,2

-dimensionless radial coordinate

-droplet radius

-dimensional time

-characteristic velocity scale in the i-th domain, i = 1,2
-velocity of the flow at the infinity

-velocity field in the ¢-th domain nondimensionalized
by the corresponding velocity scale U.(‘), i=1,2
-polar angle in spherical coordinate system

= cos?

-molecular viscosities ratio, u(1)/u(?)

-molecular viscosity of the fluid in the i-th domain, 1= 1,2
-dimensionless time

-convection time scale in the i-th domain, =1,2

__R
I
-diffusion time scale in the i-th domain, 10 D 1,2
-chemical reaction time scale in the i-th domain, k—%'.—), i=1,2
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Table 1: Coefficients in eq.(1) depending on the choice of 7, (3,7 = 1,2)
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ABSTRACT

This paper presents a probabilistic one-dimensional finite element model
for heat transfer processes in porous heat exchangers. The Galerkin approach is
used to develop the finite element matrices. Some of the submatrices are asymmet-
ric due to the presence of the flow term. The Neumann expansion is used to write
the temperature distribution as a series of random variables, and the expectation
operator is applied to obtain the mean and deviation statistics. To demonstrate the
feasibility of the formulation, a one-dimensional model of heat transfer phenomenor
in superfluid flow through a porous media is considered. Results of this formulation
agree well with the Monte-Carlo simulations and the analytical solutions. Although
the numerical experiments are confined to parametric random variables, a formula-
tion is presented to account for the random spatial variations.

INTRODUCTION

Porous heat exchangers are key components in many engineering systems
such as high performance regenerative heat exchangers, thermal energy storage sys-
tems, cryocoolers, and packed beds. Several techniques have been developed to
analyze these systems. These techniques include, among others, analytical tech-
niques, such as separation of variables [1,2], Riemann method [3] and similarity
transformation [4]; -semi-analytical techniques such as orthogonal collocation [5)
and collocation-perturbation [6,7); and numerical methods such as numerical inte-
gration [8], shooting and Runge-Kutta integration [9], and finite element methods
[10]. In these techniques the above systems are considered as deterministic. That
is, the problems are formulated in terms of mean-values of the properties neglecting
variations in the mean values. Experimental measurements, however, show that
the properties of the systems may vary significantly in a random fashion, especially
near a low temperature. Given the stringent demand on the design of modern heat
exchangers, these deterministic models may not be adequate.

Random properties can be incorporated in the above techniques using the prob-
ability theories and the theories of differential equations [11-14]. In many applica-
tions, it is difficult to solve the resulting differential equations in closed form even
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when the randomness is not considered {15]. In the last 30 years. Finite Element
Methods (FEMs) have successfully been applied to solve a large class of determinis-
tic systems, and more recently, probabilistic systems. Current trends for analyzing
random systems in engineering are given by Iyengar and Dash [16], Ibrahim [17],
Shinozuka [18], and Benaroya and Rehak [19]. Chamis and coworkers [20, 21] have
developed a general purpose finite element computer code called PICAN for prob-
abilistic analysis of composite materials.

The numerical techniques available to solve problems consisting of random vari-
ables and functions may be broadly classified into two categories; statistical and
nonstatistical. Most statistical techniques rely on numerical simulations among
which Monte Carlo simulation has been widely used [22]. The nonstatistical tech-
niques include perturbation methods [23-26], spectral decomposition methods (15,
27, and basis random variable methods [28, 29].

In addition to the FEMs, several investigators have used the Boundary Element
Methods (BEMs). The random operator problems were analyzed by Ettouney et
al. [30-32], and more recently by Manolis and Shaw [33]. Burczynski [34] employed
the direct boundary element method to develop two distinct procedures for the
treatment of random potential problems. Cheng and Lafe [35] employed the indi-
rect boundary element method to obtain stochastic integral equations for boundary
potentials and fluxes in terms of fictitious boundary sources. Other applications of
the boundary element method include the first order perturbation method devel-
oped by Drewniak [36] for the analysis of heat conduction problems with random
heat transfer and random heat conduction coefficient. respectively, and a procedure
for the analysis of time dependent problems in the frequency domain developed by
Burczynski and John [37)].

The probabilistic methods discussed here, however. are largely confined to struc-
tural systems. and very little effort has been made to develop methods for porous
heat exchangers. In this paper. a probabilistic one-dimensional finite element model
for heat transfer process in porous heat exchangers is presented. The formulation
is based on the Galerkin method, the spectral decomposition of random processes,
and the Neumann expansion.

MATHEMATICAL FORMULATION

This section is divided into three parts: deterministic finite element model, prob-
abilistic finite element models for parametric randomness and stochastic processes.
and Monte-Carlo models. These models are considered next.

Deterministic Finite Element Model.- In order to develop a deterministic
analytical model for the heat transfer process in fluid flow through porous media.
consider the schematic of a one dimensional heat exchanger as shown in Figure 1.
It is assumed that the system is stationary; that is. the system parameters are not
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changing with time. Using energy balance, one can derive the following differential
equations

d*T dT
kf—dm2 +hs(t—-T) = CE; (1)
d*t
ksgs +hs(T =) =0 (2)

where k; and k, are the thermal conductivity coefficients of the fluid and the solid,
h is the convective heat transfer coefficient, s is the porosity coefficient, T and ¢
are the temperature distributions in the fluid and the solid, and the coefficient ¢
accounts for the energy transfer due to fluid flow. In addition to these equations, the
boundary conditions are also required. The formulation presented here is applicable
to various boundary conditions. However, for simplicity, it is assumed that the
terminal temperatures of the fluid and the solid at the two ends are prescribed.
These conditions are written as

T(z=0)=T,, tz=0)=tc T(z=L)=T.,, and #z=L)=t, (3)

where L is the length of the heat exchanger which is discretized into several finite
elements. If N is the vector of the shape functions defined over the elements, then
the temperatures T’ and ¢t may be approximated as

T=NTT, and t=NTt, (4)

where T, and t, represent the vector of the nodal temperatures of the fluid and
the solid, and the superscript T represents the transpose. Observe that both solid
and fluid regions have been discretized into an equal number of elements, and the
same shape functions have been used for both temperature distributions. This is
not necessary and a formulation that considers different numbern of elements and
different shape functions is possible. Using the Galerkin approach, equations (1)
and (2) may be written as

L d*T dT
/0 N [kfd_:r"’--*-hs(t—T)_c:i;] dz =0 (5)
L d*t
/0 N [k,@ + hs(T - t)] dz =0 (6)

Performing integration by parts on some terms of equations (5) and (6), and rear-
ranging the terms, one obtains

| =[] (7)
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where E is the global coefficient matrix defined as

—kyA - hsB —cC hsB
E= (8)
hsB —k,A - hsB

and vector b appears due to partial integration of some terms in Eq. (3) and the
boundary conditions. Matrices A, B, and C in equation (8) are defined as

4 /(dN dN)Td 0
B= / NNTdz (10)
C= / e de (11)

Equation (7) provides the desired deternumsmc finite element model. Observe that
matrices A and B are symmetric positive definite finite element matrices, whereas
matrix C is an asymmetric matrix. This makes matrix E asymmetric. Therefore.
one should not use a symmetric simultaneous equation solver to solve equation (7).

Probabilistic Finite Element Model.- As stated earlier. two types of ran-
dom behavior may appear in the system; parametric and spatial. These two random
processes will be considered separately.

Parametric Randomness.- For simplicity, only k, is considered as a random
parameter. If other parameters also vary randomly, then the formulation can be
extended appropriately. The random parameter k, may be written as k; = ko + €,
where k.o is the mean value of k,, and € represents the random variations with mean
zero and standard deviation o (i.e. < € >= 0. and < € >= ¢?). Substituting the
expression for k, into Eq. (7), one obtains

T,
[El + €E2] =b (12)
tn

where matrix E; is the same as matrix E in equation (8) except that k, is replaced
by ks and matrix E; is given as

0 O
E2 = (13)
0 -4

Observe that T, and t, are now vectors of random variables. Using the Neumann
expansion, the temperature vector can be written as

T

= [I — e(E['Ey)) + €(ET'E,)? — €(ET'Ey)° + - ] E'b (14)
2
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provided that ||e(ET'E,)|| < 1 is satisfied, which is reasonable for most practical
systems. From equation (14), the expected value of the temperature vector is

T,
< >=[I- <e>(E'E)+ < € > (E['E))'~ < € > (E['Ey)* + | ET%
B T
(15)
where <> is the expectation operator. Observe that E;'E; is constant. Further-
more, given the probability distribution, < ¢ > (¢ =1,2,---,) can be computed

numerically and in some cases analytically. Substituting these values in equation
(15), the expected values of the temperatures can be obtained. Similarly, the second
order characteristics of T,, and t, can be obtained as follows:

T. - -
<[z @] =< VET L BB [T+ BB B> (10

Once again, the matrices containing € in equation (16) can be expanded in Neumann
series to obtain the covariance matrix for temperature distribution.

Equations (15) and (16) provide a probabilistic model for parametric randomness
in k,. A similar approach can be used for other random parameters.

Spatial Randomness.- Consider that k, varies randomly from point to
point along the length of the heat exchanger and that other properties are constant.
k, can be written as k, = kym + k,r, where k,, represents the mean function and k,,
represents the stationary Gaussian process with zero mean functions and specified
correlation function R(z,u), which is symmetric and positive definite. Using the
Karhunen-Loeve (KL) expansion, k,, can be represented as [38]

ksr = zeiéi(x) (17)

where {¢:|i = 1,2,...} is a set of orthogonal eigenfunctions of certain differential
equations and ¢; (z = 1,2,...) are uncorrelated random variables. These eigenfunc-
tions satisfy the following integral equation

L .

Adi(z) = [ Rz, u)é(w)dy, (18)
where ); is an eigenvalue associated with ¢;(z). Furthermore, the coefficients ¢;
(1 =1.---,00) satisfy the following identity

)\,‘6;]' =< €€; >, (19)

where < €2 >= \; gives measure of randomness along the ¢;(z) coordinate. One of
the advantages of the series expansion is that it provides a second moment charac-
terization of k,, in terms of uncorrelated random variables.
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Using Egs. (3), (6), and (17), and following the approach presented above, one
obtains

—kyA — hsB - cC hsB T,
= [ b ] (20)
hsB - &D;, - hsB tn
where matrix D; is defined as
L dN 1, dN
D= [} (e (21)

Equation (20) is very similar to Eq. (12). Therefore, the statistical characteristics
T

of the temperature vector { TT ¢TI | can be obtained using the Neumann expan-

sion and the procedure discussed for parametric randomness.

The above discussion provides a probabilistic model when &, represents a stochas-
tic process. A similar approach can be used for other stochastic processes.

Monte-Carlo Method.- Monte-Carlo simulations rely on equations (12)

and (20). In this technique, a random number generator is used to obtain a large
set of random numbers that represent the desired probability distribution curve of
the random variables. This process is repeated for each random variable. Depend-
ing on parametric or spatial randomness, equation (12) or (20) is used to obtain
an equal number of sets of nodal temperatures, which are then used to obtain the
statistics for the nodal temperatures. For an accurate answer, this scheme requires
a large number of numerical tests. This number can be reduced using the following
approach: (1) grouping the random data, (2) performing only one test for each
group. and (3) using the probability information to account for other data in the
group. This approach can significantly reduce the number of numerical runs for
accurate results.

NUMERICAL RESULTS AND DISCUSSIONS

To validate the formulation developed here, a dilution refrigerator heat ex-
changer consisting of superfluid Helium II as fluid and the sintered copper as
the solid was considered. The system response was obtained using this scheme
and an analytical scheme. For numerical simulations, the following parameters
were considered: K; = 7X10'W/(m.K), K, = 500W/(m.K), h = 1200W/(m?K),
¢ = 11.75W/(m.K), and s = 0.2792m which are typical of this system. The value
of L was taken as 10 m. For convenience, the non-dimensional temperatures of
the fluid Ty and the solid ¢, were defined as follows: T; = (T — Tp)/(Ty — To) and
t, = (t—Ty)/(Tr — Tp). The following boundary conditions were taken: T(0) = 0.0,
t,(0) = 0.8, and Ty(L) = t,(L) = 1.0. The values of k, and h were varied to
study the effects of these parameters on the temperature distribution. To study the
probabilistic effects, the system statistical response was obtained using Monte-Carlo
simulations, the analytical schemes, and the proposed scheme. Results of this study
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are shown below.

Figure 2 compares the temperature distributions obtained using the analytical
and the proposed schemes. The two results agree very well. The fluid temperature
changes almost linearly due to the large conductivity of superfluid Hell. The solid
media temperature decreases faster near the inlet point than inside the exchanger
because of the strong convection near the inlet. Since the outlet point tempera-
ture is higher than the inlet temperature, the temperature of both fluid and solid
increases after some distance. Once the temperature of the fluid and the solid be-
come equal, convection stops and the temperature of both media increases at the
same rate.

Figure 3 shows the temperature profiles of the solid and the fluid for k, = 250,
500, 1000, 1500, and 2000 W/(m.K). It is clear that an increase in solid thermal
conductivity causes the temperature of the solid to increase. This is because con-
vection becomes less dominant at higher values of k,. Due to large fluid thermal
conductivity, the fluid temperature profile remains unchanged.

The temperature profiles for A = 600, 1200. 2400. and 12,000 W(m?.K) are
shown in figure 4. As expected, increase in convective heat transfer coefficient
causes the solid temperature to decrease rapidly and merge with the fluid temper-
ature sooner.

In this investigation, parameter h was considered as a random variable, and all
other parameters were kept the same. Using a random number generator, 20,000
random sample points having 10 % variations of mean convective heat transfer co-
efficient with 90 % confidence were generated. These data were used in the Monte-
Carlo method, the exact solution, and this scheme to predict the mean response
of the temperature profile. All three schemes gave the same results. To compare
the relative accuracy of the current scheme with the Monte-Carlo scheme, the per-
centage errors for the two schemes were computed. Results are shown in Figure 5.
It can be observed that both schemes overpredict fluid temperature while they un-
derpredict solid temperature, and the difference between the two schemes is small.
However, from the formulation, it is clear that this scheme requires fewer number
of computations than the Monte-Carlo scheme.

CONCLUSION

A deterministic and a probabilistic one-dimensional finite element model for heat
transfer processes in porous heat exchangers has been presented. A set of numeri-
cal experiments have been performed to validate the model. This formulation leads
to an asymmetric global coefficient matrix. Numerical experiments show that this
scheme agrees well with the analytical and the Monte-Carlo methods. However, for
mean and standard deviations, this scheme requires fewer number of computations
in comparison to the Monte-Carlo scheme.
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SUMMARY

A two dimensional finite volume method Is used to predict the film coefficients in the transitional
flow region (laminar to turbulent) for the radlator panel tubes. The code used to perform this analysis is
CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is
then used to augment a Sinda85 model that predicts overall performance of the radiator. A final
comparison is drawn between the results generated with a Sindag85 model using the Sinda85 provided
transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

INTRODUCTION

Plans for the radiator for Space Station Freedom were to have several panels connected by fluid
manifolds. The manifolds on either side of the radiator are connected by 12 thin tubes (1/8", 3.175
mm) per panel. (see Fig. I). Flow through the tubes is not a constant rate. It varies as a function of
the position of the station as it relates to the sun. The flow in the thin radiator tubes can go from a low
fiow rate (laminar) to a high flow rate (turbuient). Accurate prediction of the radiator's thermal
performance depends on several aspects, including the abllity to predict the film coefficients of the fluid
in the panel tubes. A grey area in this prediction is in the area of transition flow (2300 < Re < 10,000),
especially in thin tubes. Small changes in the film coefficient can effect predictions of the radiator
performance and freezing of the working fluid.

SYSTEM DESCRIPTION

A radiator panel tube has an inner diameter of 1/8", and the tube is 12’ long (3.175 mm, 3.658 m).
This translates to an L/D of 1150. The Sinda85 model (see Ref. I) took the entire tube into account,
along with the thermal connections to the heat sink (the space environment). This allowed the model to
predict the tube’s fluid exit temperature.

The CAST model (see Ref. Il) only modeled the tube to an L/D of 70. This allowed the flow to
become fully developed and predict accurate film coefficlents. A compiled table of these coefficlents
was then input into a second Sinda85 model. This model is an exact duplicate of the above mentioned
Sinda85 model except for the differing film coefficients.

THE CAST CODE

It is assumed that the reader is familiar with the basic structure of Sinda85. No discussion will be
held on the development of that model. The cast model does need some discussion. CAST is a two
dimensional, finite volume fluid analysis code. After generating a grid that used an L/D of 70, the
model was run for three known scenarios. The first was a laminar (Re = 2300) case. The predicted
film coefficients were within 5% of the classic Nu = 3.66 correlation (see Table | and Ref. llI).

Next, the geometry was changed by increasing the diameter by a factor of 10. The fiow was
increased to obtain a Reynold’'s Number of 10,000. Here, the predicted value of the film coefficient was
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Table I: Laminar and Turbulent Control Cases

Re UA (Ref Il) UA (CAST)

2300 11.9 [btu/hrPF]  11.4
10,000 (10D) 4.25 3.57
10,000 24.0 23.5

within 10% of the classic Dittus/Boelter correlation (Nu = 0.023 * Re".8 * Pr ~.3, see Ref. lll).

Finally, the diameter of the tube was brought down to the actual vaiue (0.125") and the model was
run again at a Reynold's Number of 10,000. This time the model prediction was within 3% of the
Dittus/Boelter correlation. These three results give a good deal of confidence to the ability of CAST to
accuratly predict the transition flow film coefficlents.

The CAST code Input was now modified to run in the transition region. One point of interest was to
determine that If acceleration and deceleration of the flow would effect the onset of turbulence (see Ref.
IV). When the acceleration parameter K (defined beow) reached a value of 2.0e-06, laminarization
becomes significant and and the heat transfer capabliities of the fiuid are altered. In the case of the
radiator flows, the change in the velocity rates was not great enough to have any impact. (K < 1.0e-09)
In other words, the flow accelerated and decelerated at siow enough rates so as not to effect the heat
transfer.

K=v (dU/dx) /U2
where v = kinematic viscosity
U = stream velocity

Another area of concern was the effect of the transient conditions would have upon the system.
Sinda85 uses an implicit (backward) differencing scheme to handle its transient fiuid calculations. An
ideal fluid analysis code will have a long term history of each fluid element, as this may have an effect
on the performance of the fluid. The CAST model was run in steady state form for a series of
Reynold’'s numbers (see table 11). A set of transient runs spanning the same range as the steady state
runs was also completed. The end result being, once again, the fiow rates changed siowly enough that
steady state runs were accurate enough to be used to predict the transient cases. This allowed the film
coefficients obtalned for the transient CAST runs to be implemented in the Sinda85 model with
confidence.

Table Il: Reynold’s Number vs. CAST Fiim Coefficient Calculations

Re UA
3000 15.2 [btu/hr/°F}
4000 20.8
5000 21.4
6000 21.5
7000 23.3
8000 234
9000 23.5
10000 23.6

RESULTS

Figure Il shows the results of the CAST model over the range 3000 < Re < 10,000. Film
coefficients versus L/D and Re are presented. Film coefficients were sampled over the length of the
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tube for each flow rate. The film coefficients were caiculated in the following manner:

AT = (§T1 Ui) | Uave - Tw
q =(T1-Tw) k/ Ay
hte =q /AT

Where Ti = Incremental Axial Temperature
] = Incremental Axial Velocity
Uave = Mean velocity
Tw = Wall (boundary) temperature

q = Heat flux
T1 = Temperature of increment next to the wall
k = Thermal Conductivity

htc = Fjlm Coefficient

Table Iill shows the fully developed film coefficients obtained from CAST versus the Sinda85 flim
coefficients for the range of Reynold’s numbers. Sinda85 uses two correlations over the area of
concern, Over the range 1960 < Re 6420, Sinda85 uses Hausen's correlation:

Nu = 0.116 (Re".667 - 125) Pr".3

And over the range Re > 6420, Sinda85 used the Dittus/Boelter equation.

Table 1l was generated using the mean values for each flow rate of the film coefficients from an
L/D of 50 out to an L/D of 70.

Table IV is a the final table that lists the radiator panel tube exit temperatures generated by the two
Sinda85 models.

| Table Ill: Sinda85 and CAST Film Coefficients

Re  UA (Sinda85)  UA (CAST)

3000 6.0 [btu/hr/°F] 15.2
4000 9.5 20.8
5000 125 21.5
6000 155 21.5
7000 18.0 23.3
8000 20.0 23.4
9000 22.0 23.5
10000 24.0 23.6

| Table IV: Sinda85 and CAST Radiator Tube Exit Temperatures

Re Temp (Sinda8s) Temp (CAST)

3000 -35.8 [°F] -36.8
4000 -28.9 -29.5
5000 -29.2 -24.5
6000 -20.8 -20.9
7000 -18.2 -18.3
8000 -16.2 -16.3
9000 -14.6 -14.6
10000 -13.3 -13.2
CONCLUSIONS
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A review of Table lll shows that higher film coefficients are obtained using the CAST code instead
of Hausen's correlation (which is empirically derived at low Reynold’'s numbers). The reason for the
increased heat transfer can be explained by the effect of the thin tubes. Turbulent mixing boundary
layers take up a larger percentage of the axial flow. This leads to more fluid mixing and enhances heat
transfer.

The higher flim coefficlents lead to lower fluid exit temperatures, le, the radiator becomes more
effective. However, the film coefficlients are only one part of the thermal network of the radiator. The
overall effect is small and well within any margin of uncertainty so as not to change any conclusions of
the radiator performance made by the original Sinda85 model.

A side note to the conclusions must be considered here. Had the radiator tubes been much
shorter, the entry region effects would have been much greater. Figure Il shows the increased UA’s for
at the Iinlet conditions and as the flow starts to develope. It is clear that there is enhanced heat transfer
in this area. The overall length of the radiator panel tubes makes this insignificant but for shorter tubes,
this augmented heat transfer would have had to have been considered.

RECOMENDATIONS
The particular version of the CAST code used Is refered to as a High Reynold's Number (HRN)
version. It is best suited for flows well above the laminar region and into turbulent. For the lower

Reynold’s number cases (the ones close to Re = 2300) the Low Reynoid’'s Number (LRN) version, also
known as the k-e model could be used. The LRN could be used to verify, or modify, the HRN values.

REFERENCES
I: Sinda85 User's Manual, V2.3, Cullimore, Goble, Jensen, & Ring, 1992
Il CAST User's Manual, Peric & Scheuerer, 1989
ll: Fundamentals of Heat Transfer, incropera & De Witt,1981

IV: On the Prediction of Laminarization, Laudner & Jones, 1969
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Figure II: Transition UA’s vs Re and X/d
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SUMMARY

Using global interpolation functions (GIFs). boundary element solutions are
obtained for two-dimensional laminar flows. Two schemes are proposed for
handling the convective terms. The first treats convection as a forcing func-
tion. and converts the flow equations to pseudo-Poisson equations. In the
second scheme. some convective effect is incorporated into the fundamental
solution used in constructing the pertinent integral equations. The lid-driven
cavity flow is selected as the benchmark problem.

INTRODUCTION

The boundary element method (BEM) has traditionally been applied to prob-
lems governed by linear differential equations. At the core of the basic BEM
computational process is the fundamental solution (also referred to as the
free-space Green's function) defined as the impulse response of the governing
equation to a unit action. This fundamental solution is either too difficult
or impossible to derive for practical nonlinear problems. Recently. with the

233



introduction of the so-called Dual Reciprocity techniques (see e.g., Nardini
& Brebbia [1982]: Brebbia ct al.. [1991): Partridge et al.. [1992]): Cheng et
al.. [1993]: Lafe [1993]: Lafe & Cheng [1994]). the method is being proposed
for certain classes of nonlinear problems.

Using the Dual Reciprocity approach. a given problem is typically decom-
posed into two parts - the linear and nonlinear portions. The solution to the
linear portion is represented by a boundary integral whose kernel consists
of the fundamental solution to the linear governing equation. The nonlin-
ear part is represented by either 1) local bases functions (Brebbia et al.,
[1991]): or 2) global interpolation functions (GIFS) (Lafe [1993]). In either
case. the boundary integral expressions and interpolation functions contain
coefficients whose values are to be determined by enforcing the boundary
conditions. When the “direct BEM™ approach is followed the unknown coef-
ficients are in essence the unknown physical variables (velocity components,
pressure. temperature) of the problem. On the other hand. using the “indi-
rect BEM™ approach. the unknown are the weights/strengths of the boundary
sources/dipoles and the local/global interpolating functions. The computa-
tional intensity of the indirect approach is much less than for the direct.

In this paper. we develop a GIF-based indirect BEM code for two- di-
mensional steady-state incompressible Navier-Stokes equation. Test results
are shown for the lid-driven cavity problem.

GOVERNING EQUATIONS

The governing equations are:

du  Ov
=2 1
or + dy 0 (1)
du du Vap (v 9u
guw. o _ 19 KoM OJU 9
dv o Lap  p [P 0%
St = Ty (d— t o 3)

where (u.r) are the velocity components in the r and y directions respec-
tivelv. p is the pressure. p is the density. and g is the viscosity. Let

X = /L
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= y/L
u/T
= ¢/t
P = p/ (/7?2)

With these the governing eqnations become:

— o~
. 0] te
Il

ol Iv
PEN + oo 0 (4)
('U—l-%—‘j—)-[—; = —£+—l'(i)2(.+ﬂ) (3)
AN oY JdX R, \OXN?2  0Y?
S R
7AN JY J9Y R \oX? 0Oy

where the Revnold's Number R. = ptL/p.

BOUNDARY INTEGRAL EQUATIONS

In order to convert the above into boundary integral equations two ap-
proaches have heen followed. In the first approach. the entire system of equa-
tions is converted into an elliptic svstem. with the convective term wholly
embedded in the right-hand-side forcing function. There is concern about
the suitability of the elliptic system to adequately represent the convective
forces at moderate to high Revnold™s number regimes. The second approach
rectifies this through a more direct perturbation-based analvsis which 1s more

suited to capturing convective eflects as the Revnold’s number increases.

Approach I

The above equations are converted into an elliptic svstem:

Vi = R (7)
v o= F (8)
VP o= B (9)

where

ol Lot " or
7AN Yy IgX

= R (1'——+\
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a9V 9P
F, = AN AN |
» = ke ( ax PVoy Tt m") (10)

P .)(a(.'m' f)l'i)\')
3 = 2

Boundary Integral Equations

The associated indirect boundary integral equations are:
U(xX.y) = /r Wi (XY )g( XY X Y)Y dT + Z JuU(X. YY) (11)
“.
F(X.Y) = /r W XY Yg(XN Y XY dT + Z SV X.Y) (12)
: .
P(X.Y) = /r wa( XY )g(X Y XY ) dT + 3 e 0u(X.Y) (13)
: P
in which
g=1n [(.\" - X4+ (Y - )")2]
Y S MUX.Y) = F(XLY) (14)
k

VAL(X.Y) = M (L Y)

The functions M (.X.Y") are the interpolation functions used in represent-
ing the convective terms. If we choose

M, = cos(mp X)cos(,Y) (15)
it is easily shown (Lafe [1993]) that

cos(m . X )cos(ni YY)

U = : :
* (ni + mj)

(16)

Approach 11

"Our aim here is to have a better incorporation of the convective effects in
the driving differential operator. Let

[,' = [-U+1-1
V= 141
P = P0+P1
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i

where ({ . V5. Py) denote solutions to a convection-free flow field. while (U, Vi, Py)

represent the convective effects. Hence

‘_'2('0 = 0
T, o= 0
Mooty Il oV,
-2 _ o |%Z0% Podlo
Vb oX 9Y 9y OX
while
R (Co Vo U V1 P = fitl o Voo Po) + (L0 V)
FV V= onlo Vi U0 Vi P = Fall e Vi Po) + ha([0 V)
3\—;2P|—03((_'0.‘{).(']."].])1) = /I:;((.l.‘-])
where
B gg_l sy, o _(')1'1‘()(0 P
9r = Loy Tox YTy T oy X
- T ()‘] ()‘0( L1 d‘] ()‘0 ()P]
o2 = Loy + oy Ty 't oy
o Ao OV ()\0()1, AN, 9V al,
5T O09X 0Y 9y X 9Y 9N 00X oY
foo oo ‘,t)l_}, P,
R ) B A
_ 0‘0 ()‘0 ()PU
U, ol
o= {‘d\l "‘a_)?
_oV; dx,
hy = Gigy Thgp
/ AL oV, 9l v
1 = - _—
3 ox 9y 0y oX

The external boundary conditions are imposed on ({ p. Vo. Fy). Therefore the
variables ({ 7. 1. P;) are allowed to enjoy homogencous boundary conditions.
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Boundary Integral Equations

The velocity components ({'y.Vy). which are governed by Laplace's equa-
tions. can be represented by ‘pure’ boundary integral equation using the
fundamental solution for potential flow. However the pressure term, because
of the non-zero forcing function. will include glohal interpolation functions.

Therefore. the indirect boundary integral equations for the convection-
free variables are:

lo(X.Y) = /r wor (X', Y")g( X' Y X.Y') dT (23)
TH(X.Y) = /r wor( X" Y )g(X'. ¥ X.Y') dT (24)

Po(X.Y) = /I_11'03(4\’1.)"")g(.\".)”: X)) rlI“+ZJ0k\IIk(.\'. Y) (25)
k

where (wgy. wo,. wy3) are fictitious sources while ¥, are the GIFS.

The convective effects ({7,.13. P,) are represented by GIFS. For flows in
simple geometries it is possible to select GIFS which automatically satisfy
the required homogeneous boundary conditions.

Hence
((X.Y) = ;;mwk(_\'.y') (26)
H(X.Y) = ';,.a.zk\pk(_\'.)') (27)
A(X.Y) = ;@.wk(_\'.r) (28)

in which (34, 35, 331) are the pertinent coefficients for the GIFS. These
parameters are calculated by enforcing

1. Equations (20-22) at selected collocation points within the flow region
and

2. Homogencous conditions at selected boundary points.

The chief advantage of the first approach is the simplicity and size of
the global coefficient matrices. derived from the Laplace equation solver.
This translates into a compact. fast. and highly efficient numerical imple-
mentation. The drawback is its iterative character since the forcing function
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depends on the solution being sought. C‘onvergence is difficult to achieve for
large Revnold's number hecause the governing elliptic svstem becomes singu-
lar. and cannot adequately represent the underlyving physics of the problem.
The second approach. which in essence separates the convection-free flow
from the main flow. allows for a more direct representation of the asymptotic
limits of the Revnold's number. Furthermore. by products of higher-order
terms (i.¢.. setting hl = h2 = h3 = 0. the solutions can be obtained without
iteration. However. the coefficient matrix is larger and the approach involves
a greater level of computational intensity.

NUMERICAL IMPLEMENTATION
Approach I

We subdivide the boundary into n, elements. Let Np(x) (A = 1,2,---my)
represent the bases functions describing the distribution of w on I'. In the
examples being reported in this paper. constaut bases functions are being
used for the fictitious strengths w; on the houndary. By selecting each of the
ny boundary points as successive origins ol integration. the pertinent integral
equations can be assembled into the svsten:

ny
Z apwr=b; 1 =1.2.--.n, (29)
k=1
where
C\ax! '.x,) dx’' ;
i Jr XexXg(xt ) dxt o oxi € Te (30)
Jr, Nu(x)0g/on(X'.x,) dx" x; € Tq
h = (D(xl’ - Zyi] .}[\DI/ X; € rd> (31)
T ()@/()n(x,) - Zy;l .f‘l‘(')\p,'.l'/(')ll X; € FQ
where ® = (I.1.P). Therefore. we have n, equations to determine wy
(k= 1.2.---n). Svmbolically equation (29) can be written in the alternative
form:
AW =B (32)
which can be inverted to give:
W=A"'B (33)
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The whole process boils down to the iterative solution of equations (14)
and (33), with repeated updating of F using (10). The iterative steps are:

1. Start with a trial F (i.e.. F, values for + = 1.2.---ny).
2. Obtain .3 from equation (14).
3. Obtain W using equation (33).

4. Use discretized forms of the appropriate integral equations to compute
®. V& at all n,y points. This provides a better estimate for F.

5. Go back to Step 2 if convergence condition is still unsatisfied.

Note that the matrix inversions in equations (14) and (33) need only be per-
formed once. for fixed boundary problems. The vectors W and 3 are the
quantities whose values change during the iterative process. Once conver-
gence is reached. the discretized integral equations can be used routinely to
obtain ® = (1. P) or the gradient at anv point (x) of interest.

Approach II

The numerical implementation for the convection-[ree quantities (Uy, Vo, Po)
is similar to the one followed in Approach I. with the coefficients for the GIFS
set to zero for the velocities. No iteration is required.
The convective-flow quantities are calculated through the coefficients (34, B2k Fai)
whose values are obtained by solving the following coefficient matrices:

nr nr nr
.'g”.fll,';‘. + Z ~31}.~42ik + Z .f”..—‘;;,;‘. = F],’ t=1.2.--- ny (34)
k=1 k=1 k=1
nr nr nr
B+ Y 3uBak + . wBay = Fy i=12,--ng (35)
k=1 k=1 k=1
nr nr _ nr
I Crin + Z 33k Coir + Z InCa = Fa i=1.2.---ng (36)
k=1 k=1 k=1
nr
jlkh‘l./k =10 ‘/‘ =1.2.--- ny, (37)
k=1
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T
S duwEy =0 j=12.m, (38)
k=1
nr
ks =0 j=1.2.---m (39)
k=1
where (if the higher order terms are neglected)
I —, ) IV, . JW, al’y
A0 = - AX;) — ,—,‘,—‘ D) (X)) — =YX
11k R, VW, (x,) — [ u(x )(.)‘\. (x,) ol X)) BT (x/) ox U i(x;)
()( 0
."),~ = X; |
2k 0y —— (X)W (x)
()\I/A
-"‘:’»1/; - —W(xl
()‘0
B = ()\( X )W (x;)
1 ) IV, . IOV, JV
By = Y?—V"I’L-(X,‘) -1 o(X;)TJK.‘-(X,') - \(»(X..)ETA(XI') - 0_}?‘1’&()\1)
O\IIL
B3y = PTE —(x;)
y _ ()‘O (}\IlL AP 0 ()\I/L
Cyp = —(X; ))\( )+)\(X))).(X‘)
. _ ()( 0 ()‘I’L ol 0, v, )
(‘_’tk - (j\( ) ))(xl)+ ())-(Xl)()‘\(xlj
. |
Csie = ;V‘\Dk(x')
; a7y )(
o= D+
F h(X j\(X)+ ol X; )) )\
- . ) 0 . ()‘0 f)Ry
AN N0 el ol Loy
1.,: U(xl)i)‘x-(xl)+‘O(XI)(.}}-(XI)+ (,)).()\1)
F.";i =0
Eg_,;; = lI’;\.(X.,) if X, € I'd,,
AV »
Eg_,';,. = on (X‘,') i X; € Fq,

In the above & = (I V. P): Q = (9 [on. OV /. dP[dn)

and x, = (X.Y") for 2D flows.
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TEST RESULTS

We examined the lid-driven cavity flow problem depicted in Fig. 1. A unit
horizontal velocity is imposed on the lid (at Y = I). while the no-slip bound-
ary condition {" = V7 = 0 is imposed on all solid walls. The boundary
condition for the pressure on all walls is (Fletcher [1991]):

oP 1 0 ((’)(' (")V)

on R, Os

ay oX

A typical convergence profile. using Approach L. is shown (R, = 15) in Fig.
2. The horizontal velocity at the vertical center-line is shown in Fig. 3.
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CONCLUSIONS

A boundary element code. based on the use of global interpolation func-
tions. for solving the Navier Stokes equations have been proposed in this
paper. The avoidance of any domain integration shows the enormous power
of the technique. As long as the underlving physics of the problem is ade-
quately represented in the fundamental solutions used as the kernel of the in-
tegral equations. accurate simulations can be carried out for moderate to high
Reynold’s number flows. Only trigonometric hases have heen used to repre-
sent the nonlinear convective terms. Investigations are currently underway
for emploving other bases including those derived from orthogonal functions
such Chebvchev polynomials. wavelets. and cellular automata transforms.
Three-dimensional GIF-based BEM code for internal flows are also being
developed.
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SUMMARY ﬂ 4

The effects of different turbulence boundary conditions were examined for two classical
flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero pressure
gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes
solver with k-€ turbulence modeling, developed at the U.S. Navy David Taylor Research Center.
Six different combinations of turbulence boundary conditions at the inflow boundary were
investigated: In case 1, ’exact’ k and ¢ profiles were used; in case 2, the ‘exact’ k profile was
used, and € was extrapolated upstream; in case 3, both k and € were extrapolated; in case 4, the
turbulence intensity (/) was 1%, and the turbulent viscosity (14,) was equal to the laminar viscosity;
in case 5, the ‘exact’ k profile was used and , was equal to the laminar viscosity; in case 6, the /
was 1%, and £ was extrapolated. Comparisons were made with experimental data, direct
numerical simulation results, or theoretical predictions, as applicable. Results obtained with DTNS
showed that turbulence boundary conditions can have significant impacts on the solutions,
especially for the free shear layer.

INTRODUCTION

Turbulent shear flows play a major role in many aerospace and fluid dynamics
applications. Wall bounded turbulent shear flows, i.e. turbulent boundary layers (TBL), are
present in nearly all moderate to high speed extemal and internal flows. Turbulent free shear
layers (FSL) are important for many applications such as flow mixers and thrust producing
nozzles.

In computational fluid dynamic (CFD) analyses, the use of an appropriate boundary
condition (BC) is a critical element in assuring convergence to an accurate solution. Use of
inappropriate boundary conditions may cause any one or more of the following: inaccurate
solutions, poor convergence, nonphysical effects, or divergence.

For turbulent flows, the k-£ turbulence model introduces two new flow properties,
turbulent kinetic energy (k) and turbulent dissipation (£), each with its corresponding transport
equation which must be solved numerically by the flow solver. As for any other flow property, it
would seem to be essential to assign the proper boundary conditions for k and &, especially on the
inflow boundary, where the flow enters the computational domain. However, the use of
appropriate turbulence BC’s is frequently underemphasized or neglected.

Ideally, the exact profiles of k and € would be known, and they would be applied as the
inflow BC, but thatis usually not feasible. Experimental k profiles are sometimes available, but
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often with inadequate resolution for use as a CFD BC, especially near the wall. Measurementof &
requires an unsteady measurement of flow velocity, with a response time fast enough to capture
the smallest turbulence time scales, preferably in 3 components to take into account turbulence
anisotropy. € is almost impossible to measure experimentally, as it is calculated from the second
derivatives of mean flow properties, requiring exceedingly accurate measurements on a very fine
survey grid.

Many flow solvers simply extrapolate k and € on non-wall boundaries of the solution
domain. But upstream extrapolation of turbulence properties at the inflow boundary is counter
intuitive, and it has been shown to produce inaccurate results (Georgiadis and Yoder 1994). In
particular, extrapolation of k and € at the inflow appeared to inhibit the production of k near the
inflow plane, resulting in locally lower turbulent viscosity. Furthermore, the eigenvalues of both
k and £ transport equations are equal to the mean flow velocity, indicating that at the inflow
boundary, k and £ values should be specified (Hirsch 1990).

Alternately, some turbulence properties could be assigned uniform values over the entire
inflow boundary. Uniform turbulence intensity (/) and turbulent viscosity (i) could be specified;
k and € values, which will vary across the boundary depending on the mean flow properties, can
be derived from 7 and y,. Another possibility is to specify uniform / and twrbulent length scale
(L), and from these derive k and &. However, the specified values of 7 and p, are typically
arbitrary estimates. Georgiadis, Chitsomboon and Zhu (1994) examined a 2-D ejector nozzle,
which includes both wall bounded and free shear flows. Specifying uniform / and u, at the inflow
was found to match the data better than specifying 7 and L, or extrapolating k and €.

In the present work, the effects of different CFD turbulence BC’s are examined for two
classical flows: a turbulent plane free shear layer and a flat plate wrbulent boundary layer with zero
pressure gradient. The flow solver used is DTNS, an incompressible Reynolds averaged Navier-
Stokes solver with k-€ turbulence modeling. Different combinations of the following boundary
conditions are used: ‘exact’ k profiles, ‘exact’ £ profiles, extrapolated k, extrapolated €, uniform 7,
and uniform 4, Comparisons are made with experimental data, direct numerical simulation
results, and theoretical predictions, as applicable.

METHODS
Flow Solver

DTNS is an incompressible Reynolds averaged Navier-Stokes flow solver with k-¢
turbulence modeling, developed at the U.S. Navy David Taylor Research Center, primarily by
Gorski (1988a, 1988b). The three versions of the code are designed to solve two dimensional
(DTNS2D), axisymmetric (DTAXI) and three dimensional (DTNS3D) flows, respectively.
Although the flows examined herein are two-dimensional, the three dimensional flow solver
(DTNS3D) was used here, on a three dimensional grid with 5 identical grid planes in the cross
stream direction, so thatin the future, methods developed here could be be directly applied to
three-dimensional problems of interest.

DTNS was selected for this study for two reasons. First, itis a relatively well established,
general-purpose code, with a number of documented test cases with experimental comparisons,
such as: cascades (Gorski 1988b), flow over a cylinder (Gorski 1988a), an NACA 0012 airfoil
(Gorski 1988a), flow over a backward facing step (Gorski 1988a, Steffen 1992 & 1993) and
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laminar boundary layers (Steffen 1992). This allows the present study to focus on the fluid
dynamics, instead of the code development and validation. Second, it is an ‘open’ code, with the
source code available. This allows the specialized turbulence BC’s to be implemented by
modifying the code. In addition, study of the source code leads to a deeper understanding of the
computational procedure and the relevance of the resulting solution, which are essential to a
fundamental study such as this.

The method of pseudo compressibility is used in the governing equations, so that state of
the art schemes developed for compressible flows may be applied to incompressible flows. The
total variation diminishing (TVD) scheme of Chakravarthy and Osher is used to discretize the
convective terms of the governing equations. The discretized equations are solved implicitly using
an approximate factorization method. Gorski (1988a) provides further details on the solution
procedure.

The Launder and Spalding (1974) turbulence model is implemented, which is generally
considered the standard high Reynolds (Re) number k-¢€ turbulence model. A wall function model
is used, which does not require boundary layers to be resolved using large numbers of packed grid
points, thus allowing complex wall bounded flows to be solved with a reasonable number of grid
points, and in a reasonable amount of time. Although the profile of an attached turbulent boundary
layer is assumed at the wall, the solutions have been found to be accurate even for some drastically
separated flows (Steffen 1993). Even low Re k-€ models which resolve the boundary layer in
detail on a fine grid, make certain empirical assumptions about the wall bounded flow
characteristics. Furthermore, low Re k-€ models models are often highly grid sensitive, and can
require extremely finely resolved grids packed very close to the wall to produce an accurate
solution (Avva et al. 1990).

The boundary condition routines were modified to allow for different inflow conditions as
follows. Mean flow velocities (u) are read in from a data file. k and € may be independently
specified at the boundary in two different ways: the profile may be read in from a data file, or it
may be zeroeth-order extrapolated. p, is calculated from k and &.

For both the wall bounded and free shear flow cases, six different combinations of k and ¢
BC’s at the inflow boundary were investigated, as shown in table 1. In case 1, ’exact’ k and €
profiles are used. In case 2, the ‘exact’ k profile is used, and € is extrapolated upstream. In case
3, both k and € are extrapolated; this is the default case for DTNS. In case 4, the [ is uniformly
1%, and y, is equal to the laminar viscosity; k and € values are derived from these using the
following expressions. k and 7 are related by:

= ;— 12l
(1
In this turbulence model € and 11, are related by:
B =C,pki/e

()
where C,=0.09, and the damping terms are neglected. In case 5, the ‘exact’ k profile is used, y,
is equal to the laminar viscosity, and £1is calculated from (2). Incase 6, the I'is 1%, k is derived
from I as in (1), and €is extrapolated.

The amount of detailed turbulence information required at the inflow boundary varies from
case to case. Case 1 requires both k and € profiles; this is the most ideal case, but as discussed
before, £ profiles are almost never available. Cases 2 and 5 require only k profiles; this is typically
more feasible than case 1, because turbulence levels, and thus k, are often measured
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experimentally. Cases 3, 4 and 6 require no detailed turbulence information at all.
Flat Plate Turbulent Boundary Layer

The flat plate TBL with zero pressure gradient is a fundamental fluid dynamic problem that
has been extensively studied. Initial boundary layer flow property profiles are applied at the
inflow boundary of the computational domain, the flow is propagated downstream, and the flow at
a downstream station is compared with benchmark results. (figure 1)

The direct numerical simulation (DNS, not to be confused with DTNS) results of Spalart
(1988) are used to provide the ’exact’ inflow conditions at Rey, = 300, and the benchmark
downstream solution at Re, = 1410, where Re, is the Reynolds number based on the momentum
thickness of the boundary layer and freestream velocity. When properly used, DNS is thoughtto
be as accurate as experimental results, and it provides completely detailed information of the
flowfield, including information needed to calculate ¥ and &, which are difficult to measure
experimentally.

The grid dimensions are 100 in the streamwise direction, 40 in the vertical direction, and 5
identical planes in the cross flow direction to accommodate the 3D flow solver. The grid is packed
to the wall such that at the inflow boundary y* is about 20. The bottom wall has a no slip
boundary condition, the top ‘far’ wall is a slip wall, the sides are slip walls, and the outflow has a
constant pressure. Convergence was typically obtained in several thousand iterations, depending
on the particular case.

Turbulent Plane Free Shear Layer

The turbulent plane FSL is one of the simplest free shear layers, and it too has been
extensively studied. The computational domain consists of the free shear layer mixing region
only, with the upstream boundary at the trailing edge (TE) of the splitter plate (figure 6). Asin the
TBL, the initial profiles are applied at the upstream BC of the computational domain, the flow is
propagated downstream, and the flow at a downstream station is compared with exact results.

The plane free shear layer in the McCormick’s (1993) experiment is simulated, and
comparisons are made with data from the extensive flow diagnostics in the mixing region.
McCormick’s facility consists of a fan driven wind tunnel, a contoured splitter plate, screens on
one side to slow the flow, and a square test section. The flow velocity on the slower, upper side
(U,) is 4.88 m/s, and the velocity on the faster, lower side (U,) is 8.53 m/s, giving a velocity ratio
of 1 : 1.75. Just upstream splitter TE, the momentum thickness (8) is 1.237mm on the upper/
low speed side, and 6 = 1.107mm on the lower/ high speed side. Extensive measurements were
made with triple sensor hot film probes of all three velocity components, including turbulence
properties. The flow was visualized using smoke injection and laser light sheets.

The ‘exact’ u, k and € profiles at the upstream boundary of the computational domain (i.e.
at the splitter TE) were obtained from a separate DTNS solution to a flat plate TBL, because k and
¢ profiles at the splitter trailing edge were not measured experimentally. Certainly, the resulting
solution of the FSL will be affected by the accuracy of the DTNS TBL solutions, but they should
be sufficiently accurate for purposes of comparing with other substantially differentk and € BC’s.
The DNS TBL solutions discussed above could not be used for this purpose, because the Re,
values do not correspond to those at the splitter TE.

The grid dimensions are 60 in the streamwise direction, 39 across the shear layer, and 5
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identical planes in the cross flow direction to accommodate the 3D flow solver. The grid is packed
such that y* is between 20 and 30 at the inflow boundary. The sides are slip walls, and the
outflow has a constant pressure. Convergence was again typically obtained in several thousand
iterations, depending on the particular case.

RESULTS
Flat Plate Turbulent Boundary Layer

Figure 2. shows the downstream development of the boundary layer momentum
thicknesses (6) for the six cases, and the TBL 1/5th power law approximate theory predictions
(Kuethe & Chow 1986). Downstream distance is nondimensionalized as the Reynolds number
based on the distance from the upstream plane (ARe,). Cases 2 and 3 show good agreement with
theory. In cases 4, 5 and 6, boundary layer development near the inflow boundary is suppressed.
Surprisingly, case 1, the ideal case with all wurbulence properties exactly specified, also shows
slightly suppressed boundary layer development near the inflow boundary. However,
downstream of the initial discrepancies, all 6 cases quickly approach the same theoretical slope.

At the inflow boundary, ARe, = 0 and ARey= 300. Comparisons of u, k and € profiles
are made downstream at the ARe, = 551000 plane, where the approximate theory predicts that
ARe,= 1410.

Figure 3a shows the ‘exact’ u profile, specified at the inflow boundary in all 6 cases.
Figure 3b shows the u profile at the downstream plane. Although the profiles have slightly
different in thicknesses, all have the about the same shape as the DNS solution.

Figure 4a show: the ‘exact’ inflow k profile used in cases 1,2 and S; the k profile for I=1%
used in cases 4 and 6, which is barely visible next to the vertical axis; and the k profile resulting
from upstream extrapolation in case 3. Clearly, I = 1% specifies k to be much lower than it should
be, and upstream extrapolation results in a k thatis too high. Figure 4b shows the downstream &
profiles. Despite the drastically different initial conditions, all 6 cases match the DNS solution
shape surprisingly well, but again with slightly different thicknesses.

Figure 5a shows the exact € profile used in case 1, the profiles specified in cases 4 and 5,
and the profiles resulting from upstream extrapolationin cases 2, 3 and 6. Case 3, with both k
and € extrapolated upstream, gives the best prediction of the initial € profile after case 1, but this is
most likely a fortunate coincidence. Cases 2 and 6 results in € profiles that are too low. Case §
specifies an ¢ profile thatis too high. The case 4 profile is not visible on the graph, because, the €
values are all near zero. Figure Sb shows the downstream ¢ profiles. All 6 cases fall on
approximately the same curve, and overpredict €.

Turbulent Plane Free Shear Layer
Figure 7. shows the downstream development of the shear layer momentum thicknesses

() for the six cases. 6 is indicative of the amount of mixing taken place between the high and low
speed flows, and is defined as:
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(u-Uy)(U;-u)
6: dy
(U,-U;)? 3

where U, is the mean velocity of the upper/ low speed side, and U, is the velocity of the bottom /
high speed side.

Downstream distance is nondimensionalized as the Reynolds number based on U; and the
axial distance from the computational inflow plane (Re,), which coincides with the trailing edge
(TE) of the splitter plate. Note that near the splitter TE, € is actually negative, due to the low
speed flow from the splitter boundary layers. Cases 1, 2 and 4 show good agreement with the
experimental results of McCormick & Bennett. In cases 5 and 6, shear layer development near the
inflow boundary is suppressed. In case 3, the shear layer expands at an unrealistically high rate.
However, the initial discrepancies in all cases except 6 do not persist far downstream, and the
curves shortly approach the same slope.

Profiles of u, k and € are plotted at three stations: Re, = 0, at the splitter TE and inflow
boundary; Re, = 28244, and Re, = 290510. The experimental data for u and k are available and
plotted for the two downstream stations for comparisons.

Figure 8a shows the ‘exact’ u profile, used as the inflow BC in all 6 cases. Figure 8b
shows the u profiles at the two downstream stations. AtRe, = 28244, cases 4, 5 and 6 appearto
give the best agreement with data; at Re, = 290510, cases 1 and 2 appear better. In case 3, the
shear layer is far too thick.

Figure 9a show: the ‘exact’ inflow k profiles used in cases 1, 2 and 5; the k profile for I =
1% used in cases 4 and 6 which is too low to be visible on the plot; and the k profile that results
from upstream extrapolation in case 3. Again, I=1% specifies k to be much lower than it should
be, and upstream extrapolation results in k that is much too high. Figure 9b shows the
downstream k profiles. Atboth stations, cases 1 and 2 give the best agreement with data, cases
4,5 and 6 underpredict k to varying extents, and case 3 drastically overpredicts k.

Figure 10a shows the ’exact’ inflow € profile used in case 1, the profiles specified in cases
4 and 5, and the profiles resulting from upstream extrapolationin cases 2, 3 and 6. Case 2
underpredicts &, case 3 creates an unrealistically wide profile, cases 4 and 6 are close to zero and
not visible on the plot, and case 5 specifies an unreasonably high spike. Downstream, since no
experimental data is available for &, it is difficult to tell which results are the most accurate, but
clearly, the case 3 profile is too wide.

CONCLUSIONS

The effects of different turbulence property CFD boundary conditions were examined
using the DTNS flow solver for two classical flows: a turbulent plane free shear layer (FSL) and a
flat plate turbulent boundary layer (TBL) with zero pressure gradient. Six different combinations
of turbulence property boundary conditions at the inflow boundary were investigated. The major
observations and conclusions of the study were as follows:

1. Wall bounded turbulent shear flows appeared to be relatively insensitive to the turbulence
inflow BC. Despite drastically different k and € profiles at the inflow boundary, the mean
velocity (u), k and € profiles downstream were nearly identical, and all cases approached
the same correct slope for momentum thickness development. In the near field of the
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inflow boundary, cases 1, 4, 5 and 6 suppressed the boundary layer development to
varying extents. Cases 2 and 3 gave the best results. Discrepanciesin the initial boundary
layer development slightly affected the thicknesses at downstream stations.

. Turbulent free shear flows appear to be more sensitive to turbulence inflow BCs than the
~ wall bounded flows. For free shear flows, all cases except 3 gave reasonably good
results, but with more discrepancies between the cases than for wall bounded flows.
Cases 1 and 2 gave the best results. Case 5 inhibited the initial shear layer growth, and
created an unrealistic spike in the € profile at the inflow.

. For free shear flows, case 3 (upstream extrapolation of k and € at the inflow boundary)
gave a drastically high shear layer growth rate. Note thatthis is the default case for many
flow solvers.

. Overall, when both ‘exact’ k and € profiles were used, cases 1 and 2 gave the best results.
When only k profiles were used, case 2 was best. When no ‘exact’ turbulence profiles
were used, cases 4 and 6 gave reasonable results.

. Some additional factors not considered in this study were: compressibility, specifying
different levels of uniform turbulence intensity, specifying different levels of uniform
turbulent viscosity, and more complex flowfields.

. The particulars of these findings may vary for different k - turbulence models and

numerical schemes. However, it is conjectured that overall ‘lessons learned’ from this
study are probably applicable to other flow solvers as well.
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Table 1. Turbulence property boundary conditions

Case # k e 1 n
1 exact exact - -
2 exact extrapolated - -
3 extrapolated extrapolated - -
4 cale.froml, u  caic. from , n 1% TN
5 ~ exact calc. from k, g, - Hiamin
6 calc. from/, u extrapolated 1% -
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ABSTRACT

The exchange of models is one of the most serious problems currently encountered in the practice
of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing
environments that are used across different sites, and the consequent proliferation of native tool formats.

Furthermore, increasing pressure to reduce the development’s life cycle time has originated a
growing interest in the so-called spacecraft concurrent engineering. In this context, the realisation of the
interdependencies between different disciplines and the proper communication between them become
critical issues.

The use of a neutral format represents a step forward in addressing these problems. Such a means
of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it
is kept under stringent change control. Currently, most of the groups promoting exchange formats are
contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is
being developed under the auspices of the International Standards Organization (ISO 10303).

This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis
community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some
background information, the paper presents the characteristics of the STEP standard. Later, the first efforts
to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the
currently harmonised European activities that follow up and extend earlier work on the area.

ABBREVIATIONS AND TERMS

AAM  Application Activity Model

AIM Application Interpreted Model

ARM  Application Reference Model

ANSI  American National Standards Institute

AP Application Protocol

ASCIl  American Standard Code for Information Interchange

263



ATS
CAD
CAE
CNES
ECLS
ESA

Application Thermique Spatiale
Computer Aided Design

Computer Aided Engineering

Centre National d'Etudes Spatiales
Environmental Control and Life Support
European Space Agency

ESARAD ESA's radiative analysis software
ESATAN ESA's thermal network analyser

ESTEC
FE
FHTS
FLUOR
ICETAS
IGES

IR

ISO
SDAI
SET
TAS
STEP
T™MM
TNF
VDA-FS
YC
YCV

The standardisation of analysis procedures has become an essential requirement for the
organisations operating in the European Space sector, due to the complexity found in large space projects
involving international consortia of companies. This standardisation has most obviously materialised in the
availability of a set of de facto standard tools which facilitate the interaction between the different parties
involved in a project. Examples are the ESABASE (ref. [1]), ESATAN (ref. (2]), FHTS (ref. [2]),

ESA'’s European Research and Technological Centre
Finite Elements

Fluid loop extension to ESATAN

CNES' Radiative Analysis Software

Integrated Communication Environment for Thermal Analysis
Initial Graphics Exchange System

Integrated Resources

International Standards Organization

Standard Data Access Interface

Standard d'Exchange et Transfert

Thermal Analysis for Space AP

ISO's Standard for Exchange of Product Model Data
Thermal Mathematical Model

Thermal Neutral Format

Verband Deutschen Automobil, Flaecchen Schnittstelle
ESTEC's Thermal Control and Life Support Division
YC'’s Analysis and Verification Section

THE THERMAL NEUTRAL FORMAT

Standardisation of the analysis tools

THERMICA (ref. {3]) and the recently released ESARAD (ref. [4]) tools.

An important consequence of this situation is that the tool’s native formats have also been adopted
as the de facto standards for exchange and archive of thermal models. This seemed quite convenient at a
time when the number of tools was small and no obvious alternative was available. However, this approach
is not satisfactory any longer. In fact, the use of native formats has serious and long reaching implications,

which will be reviewed in the following sections.
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' The problem of exchange
i
The exchange of thermal models is currently posing a number of serious problems to the day-to-
day practice of the spacecraft thermal analysis. Essentially, the problem originates in the diversity of
computing environments adopted by different organisations. and the consequent proliferation of native tool
formats. The situation can be even more troublesome for those organisations needing 10 maintain several
environments to serve different requirements or customers.

Furthermore, the organisations often invest in the development of proprietary software, which is
normally intended to serve purposes not adequately covered by the standard tools. These developments
contribute to enhance the companies' competitiveness, by taking advantage of in-house expertise and skills.
However, most of these tools introduce new exchangeability requirements, aggravating further the problem.

The concurrent engineering issue

A state-of-the-art analysis environment cannot overlook the need to provide proper communication
means between the different teams involved in the spacecraft development. Indeed, spacecraft engineering
is a true multidisciplinary process, in which the information follows complicated paths and different
disciplines interact in non-trivial manners.

Traditionally, each discipline’s analysis has been performed in an uncoupled way, in an attempt to
isolate their particularities and thus to simplify the assumptions and methods used for each of them.
However, two main developments have radically changed in the last years the context in which the analysis
takes place:

« the advances made in terms of computing power have allowed to perform more and more complex
analysis in a shorter time. Furthermore, this evolution has enabled the development of tools that model
and analyse the physical problems with fewer simplifications and restrictions.

« more and more complex missions impose requirements which cannot be achieved by performing
uncoupled disciplinary analysis.

With these ideas in mind, there is an increasing trend to acknowledge the interdependencies
between design and analysis and to integrate them within a tightly coupled process. This approach also
encourages the concurrent analysis of several physical problems through the use of common models,
procedures and tools. The final objectives are those of streamlining the flow of information and of
increasing the efficiency and the capabilities of the design and analysis processes, while rationalising the
resources used.

Two issues are particularly important in this context. Firstly, a good communication between the
CAD world and the analysis environment has become an essential requirement. Indeed, although the flow
of information between disciplines depends on several organisational issues, the initial stage is typically the
acquisition of configurational data from the project source, which in general is a CAD system. Secondly,
proper communication to commercial finite element (FE) packages is more and more important. The
continuous evolution of these tools in the last years makes them very attractive to both managers and
engineers. FE packages provide a framework which can be used to integrate individual discipline tools to
yield the desired multidisciplinary analysis capability. Although finite differences remains the method of
choice in spacecraft thermal analysis, the drive towards concurrent engineering is likely to foster the use of
FE tools in the future.
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The problem of archive

The exchangeability requirements can be extended quite naturally to the archive and retrieval of
analysis models and results. After all, one can consider archiving as an exchange across time. Indeed. an
archived model might not run properly when retrieved because of the evolution of the tool and the
incompatibility between different versions. An extreme case, but not unlikely given the typically long
duration of the space projects, would arise when the tools once used in a project are not available (or
supported) any more.

A further reason making the case for stable archive means is the need to perform occasional
emergency analysis campaigns to cope with spacecraft operation modes that follow unexpected events or
failures. Under the urgency of these situations, costly modifications to the archived models are simply not
acceptable.

The need for a neutral format

It is clear that the use of native formats as a means of exchange brings about serious problems. For
instance:

« their use encourages the proliferation of tool-to-tool interfaces. Obviously this is not the most efficient
way to exchange data between a given number of software packages.

« native formats are intrinsically unstable, i. e. they evolve with time. Therefore, the software interfaces
that read/write native formats have to be constantly updated in order to keep up with new versions of
the tools.

« the interface developers need to have a complete, updated description of the two formats being inter-
faced. This might be a problem if, as usual, the interface developers are not in control (at least one) of
the formats. This fact increases the chances of software interfaces lagging behind the evolution of the
tools, or simply being obsolete.

« organisations may have to develop different interfaces to satisfy each major customer’s requirements.
The extra costs incurred by this practice are frequently absorbed by the customer.

The use of a neutral format overcomes these serious problems. Such an approach is adopted by
consensus as a means of exchange and archive. A neutral format does not depend on any specific tool and
it is kept under stringent change control. The neutral format system consists not only of the description of
the data intended to be exchanged or archived, but also of a formalism describing the means for exchange
or archive and of the interfaces to other formats.

According to ref. [S], a Thermal Neutral Format (TNF) shall fulfil the following requirements:

« the TNF shall ultimately support the domain relevant to all the software tools used to perform thermal
analysis.

« the interfaces in both directions (TNF to native format and vice versa) shall preserve the integrity of the
information being exchanged or archived.

« the TNF shall be flexible enough to allow its extension without modification of the existing features.

« the TNF shall aliow the selective treatment of the data. That is, each interface shall be able to process
only the data relevant to the interface.

« the TNF shall be portable across systems and sites.
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A TNF should also benefit of a large scope. Indeed. a widely spread standard formalism should be
used to support the data exchanged or archived, simply because commercial CAD/CAE and FE tools are
more likely to include built-in interfaces to internationally accepted standard formats. The development of
a specific formalism for the TNF would not only waste efforts but also limit its immediate scope of
application.

Finally, it is important to notice that were a TNF available, the development of interfaces to and
from the TNF would normally be left to the tool developers themselves. This would likely give better
chances to have interfaces up-to-date to the last tool versions.

Initiatives in the field of Thermal Model exchange and archive

Although the problems described in the previous sections have been around for a long time, the
development of a TNF, based on a broad consensus within the European Space Industry, has not been
attempted until recently. However, a number of initiatives were born with the intention to address the
problems in one way or another. :

As previously commented, native formats were typlcally exchanged between sites. The Thermal
Mathematical Models (TMM) exchanged by means of ESATAN input decks are a clear example of this
approach. As the need to exchange geometry-based models grew, the requirement for a new format became
obvious. For that purpose, the ESABASE[4] language started to be used. Although ESABASE is basically
a system engineering package, its input language provides a means to define analysis-tool-independent
models. Furthermore, the ESABASE framework includes translators to several radiative and thermal
packages. However, the ESABASE language depends itself on the evolution of the ESABASE software,
and it has a rather limited scope.

Another ESA's initiative, ICETAS (ref. [6][7]), was not originally an effort to provide solutions to
the problems of exchange and archive. Rather, it addressed the issue of integration of thermal software tools.
Nevertheless, as work on ICETAS progressed these aspects became very relevant. Furthermore, the project
produced a description of the complete set of data required to perform Spacecraft Thermal Analysis, as well
as their interrelationships. This information is clearly very relevant to the development of a TNF.

The SET-ATS protocol

An important initiative has recently been undertaken by CNES, the French Space Agency, in order
to provide a TNF based on the French standard SET. CNES have developed the “Application Thermique
Spatiale” (ATS) Application Protocol to address the spacecraft thermal analysis exchange and archive
requirements.

The first version of the protocol (ref. [8]) provided support for three major categories of entities:

« geometrical entities extracted from a set of primitive shapes, which are meshed and have thermo-opti-
cal properties attached to their faces. These entities can be assembled to build hierarchical models con-
taining multiple occurrences of sub-models.

« results of calculations (processing) associated to geometric or thermal nodes.
« -an entity containing the data needed to characterise the orbit.

In addition to these categories, the “neutral file header” and “neutral file summary” entities define
the required additional information (origin, date of issue ...) for exchange and archive purposes.
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Following a first implementation and test, a second version (ref. {9]) has extended the original
protocol to improve the support for:

« orbit and kinematic extensions. Orbital data locate the satellite, considering it as a point in space (its
centre of mass). Kinematics data give the attitude of the satellite and its moving parts with respect to
the planet and the Sun.

- geometrical features. The set of elementary surfaces has been extended to take into account boolean
operations and high-level shapes. The boolean operations (union and difference) can be used to gener-
ate complex geometry by combining elementary surfaces. High-level shapes, which have an associated
type (e. g., box, cylinder ...), allow the easy manipulation of collections of elementary surfaces.

« language features such as comments, numbering and labelling, mainly introduced for man-machine
interface purposes.

With this extended support, the new version aims to cover the main capabilities of the FLUOR,
THERMICA ESABASE and ESARAD radiative analysis software.

The ATS protocol is based in the data and mechanisms defined in the SET Z68-300 standard, which
is implemented in a large number of CAD/CAE software packages and used extensively in the European
Aircraft Industry. The protocol, which covers some domain specific requirements, makes use of a subset of
the generic entities available in the SET language. Moreover, some items of information, not covered by the
SET standard, required the addition of new blocks and sub-blocks which can only be used by an interface
that recognizes their format and semantics. Consequently, a correct SET-ATS interface will generate a SET
physical file syntactically compliant to the SET standard. A standard SET interface will read these files,
although it will be unable to interpret the parts of the information specific to the ATS protocol.

THE STEP STANDARD
Description of the standard

Work on communication standards between CAD/CAE systems has been under way since the
beginning of the eighties, resulting in the development of several exchange formats like IGES, VDA-FS or
the above mentioned SET. Currently, most of the groups promoting these exchange formats are contributing
with their experience to STEP[10], the Standard for Exchange of Product Model Data, which is being
developed under the auspices of the International Standards Organization (ISO 10303).

STEP was first proposed in 1984, with the intention to provide a worldwide standard supporting the
complete representation of a product throughout its life cycle. STEP is different to other exchange formats
in that rather than only providing rules to format a defined set of data, it is also supplying a methodology to
formally describe the data and to implement the format. Furthermore, conformance testing to the standard
is an integral part of STEP. From this point of view, STEP goes beyond the concept standing behind other
exchange standards, by providing a standardised methodology to define application-specific product data
standards. Other advantages with respect to existing standards are:

« because of the broad international consensus built around it, STEP is likely to meet the requirements set
by many different applications.

o STEP establishes a separation between the logical design of the data and the physical implementation.

« the use of a formal language removes ambiguity and enables a rigorous conformance testing. Further-
more, automatic software generation from the EXPRESS specification becomes possible.
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STEP consists basically of a series of components (called parts in the STEP terminology). Each of
the parts are published separately, to help coping with their different degree of maturity. The main parts are:

« the EXPRESS[11] language, developed on purpose for STEP. EXPRESS is a formal information mod-
elling language used when describing the STEP entities, with the intention to ensure consistency and
avoid ambiguity.

« resource information models defining the basis for the development of application standards. The so-
called Integrated Resources (IR) are in fact the basic building blocks used to define the application
standards. They provide a unique representation of each element of information used within STEP.
These resources can be either Generic Resources, i.e. of potential use for any type of application, or
Application Resources, valid only for specific applications. The EXPRESS language is used to define
the IR.

« Application Protocols (AP), which are the actual application-oriented standards that end-users will take
for their exchange and integration needs. The APs are logically self-contained and compiete.

« implementation methods supporting the data models provided by STEP.
« strict conformance testing procedures and tools to control and to certify compliance to STEP APs.

Therefore, the EXPRESS language is used in the definition of the Integrated Resources, from which
* the Application Protocols are derived (these can also use directly EXPRESS). A STEP implementation is
produced when an Implementation Form is chosen. This implementation can be tested for conformance to
the standard using the STEP-supplied methodology.

STEP is also to play a role in the issue of integration. Indeed, there are several possible
implementation forms of the STEP standard. Today, the only implementation in place is the physical
transfer file, but work is progressing in the definition of the Standard Data Access Interface (SDAI), which
will introduce a software layer representing an abstract, “"EXPRESS™ view of the data to be transferred or
stored. The SDAI will provide in practice interfaces to both relational and object STEP databases.

STEP Application Protocols

As mentioned previously, STEP provides a standardised methodology to develop protocols
oriented to specific fields of application. The development of a particular AP stems from the specification
of the scope and the information requirements of the AP. This is achieved by means of the Application
Activity Model (AAM), which describes the processes, information flows and functional requirements of
the application. The AAM helps to understand the nature of the activities and the role of the product data in
* the field of application. The AAM is included as an informative annex to the AP.

A more detailed Application Reference Model (ARM) specifies the information requirements and
constraints of the AP, in terms of the so-called Units of Functionality. These units contain information about
the entities, attributes and relationships that determine a given concept within the ARM. Although the ARM
. is defined by means of a formal data description language, application-specific terminology is used in this
model. The ARM is also appended as an informative annex to the AP.

After the ARM is defined, the Application Interpreted Model (AIM) specify the manner in which
the Integrated Resources can be used to satisfy the AP requirements. The resource constructs can be used
directly, or refined depending on the application requirements.

Finally, the APs shall include the conformance requirements to be satisfied by any implementation
claiming to support the AP. Such an implementation is tested by performing a conformance test based on a
set of abstract test cases.
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STEP and the TNF

Several fundamental STEP parts are already available either as International Standard or Draft
International Standard. These parts include the EXPRESS language, the Physical File Exchange Structure,
the conformance testing methodology, some Integrated Resources and some Application Protocols. A
significant number of other IR and AP are being developed, with many of them close to achieve a stable
state.

Certainly, the transition from current exchange standards to STEP will take some time.
Nevertheless, enough progress has been achieved to appreciate the relevance of the STEP technology to the
development of a TNF. Indeed, STEP is an obvious candidate for the TNF, because in addition to its
intrinsic advantages as product data standard, it fulfils the basic requirements for a TNF:

« itis a neutral format that satisfies the needs for stability and tool-independence.
« its broad scope will allow immediate communication to the CAD and FE worlds.
In summary, STEP provides an excellent methodology to develop a Spacecraft Thermal

Application Protocol. For the first time ever, the thermal analysis community might have the possibility to
use a TNF tailored to its needs, but at the same time enjoying the character of full international standard.

DEVELOPMENT OF THE STEP THERMAL AP
CNES’ STEP-ATS Application Protocol

Based on the experience gained in the production of SET-ATS, CNES undertook the development
of an application protocol using the technology and methods developed for STEP (ref. [12]).

This application protocol was developed in conformance to the rules put forward in the “Guidelines
document for development of STEP protocols”. However, the complete process of Integration and
Qualification imposed by ISO on the 10303 Parts was not followed. In particular, the Application Activity
Model was not produced. On the other hand, the application protocol was developed by using, as far as
possible, resources defined in ISO 10303. However, due to the fact that STEP is still in evolution, some of
the required resources are not yet available in the standard. Therefore, these specific resources had to be
produced in order to meet the application requirements. With these limitations in mind, the STEP protocol
was defined to match the user requirements associated to the first version of the SET-ATS protocol.

The first stage of the development consisted in the specification of the information requirements in
terms of units of functionality, application objects and application assertions. This stage defines the product
data as viewed by the application users. The models are specified to have a tree structure including
occurrences of sub-models. Any sub-model can also contain surface data representing a part of the
geometry. Information related to the meshing and to the physical properties of each face is attached to the
surfaces. Moreover, the protocol supports the transfer of the data needed for the orbit determination and the
results of the thermal analysis. Finally, it includes the information related to the management of the
exchanged models (designer, creation date, entity labels, colour for possible graphical display, grouping of
entities into cells ...)

The information requirements are specified in terms of:
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« Units of Functionality that allow the classification of the application objects into coherent groups such
as geometry, thermo-optical properties or model structure.

« application objects' such as surface type, mesh characteristics and orbit parameters. These objects are
atomic elements that embody a unique application concept and contain attributes specifying the data
elements of the object.

« application assertions that specify the relationships among application objects. For instance, “‘meshing
of a Thermal_face is defined by one Mesh_characteristics”, “a Mesh_characteristics applies to one
Thermal_face” or “a Thermal_face has at most one Mesh_characteristics”

A graphical representation, using the EXPRESS-G notation, describes the structure and constraints
of these application requirements (see Figure 1).

Following the definition of the information requirements, the Application Interpreted Model was
then produced to specify the references to the STEP Integrated Resources. For each Unit of Functionality
and application object, the so-called Mapping Table shows the correspondence between the information
requirements and one or several AIM resource constructs.

Finally, the AIM’s EXPRESS annotated listing was produced to present the complete listing of the
types, entities and rules necessary to fully specify the AP.

It is important to note that the move from SET to STEP does not only represent a change in the
neutral file physical format but also demands the evolution of the requirements (or at least of the way to take
them into account). As a matter of fact, STEP promotes the concept of product whereas SET deals mainly
with geometrical models. Although the STEP AP development process is more complex, the possible scope
of the AP is much broader. Furthermore, it encourages an approach which is consistent with data
representation requirements appearing in other stages of the spacecraft design.

eometry_units MODEL o project_name
0 .
s
tength_unn
ry— -_—-
T P
Sup_mooms_oaufmnos
Ll e e
13_BN_oCLHNce !
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oomivon
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FIGURE 1. EXPRESS-G diagram presenting the information related to the
Model_structure unit of functionality
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Thermal Analysis for Space AP

The independent efforts undertaken by CNES and ESA in 1993 had similar timing and objectives,
since both intended to produce a STEP Application Protocol for Spacecraft Thermal Analysis. Thus, it
seemed reasonable to start a harmonisation process in order to reduce the chances of duplicating work.
Furthermore, it seemed sensible to rationalise the efforts by making an efficient use of the knowledge gained
by both CNES and ESA in the matter.

This harmonisation was fully achieved in early 1994 in the form of an activity to develop an
Application Protocol on Thermal Analysis for Space (STEP-TAS). Previous experience coming from the
STEP-ATS and the ICETAS projects was directly fed into the new project.

The harmonised work set off with the fundamental objectives of:

« merging the domain information models developed independently by CNES and ESA. Consensus in
the Application Activity and Application Reference Models will resuit from this merge.
« extending the AIM developed by CNES to support a subset of the domain information requirements
mentioned above. ‘
« demonstrating the exchange of thermal models via STEP files. For that purpose a prototype facility is
being developed to communicate FLUOR and ESARAD.
Results produced in the first stage of the harmonised effort are expected towards the end of 1994.

CONCLUSIONS

The concept of neutral file contributes in a very significant way to streamline the exchange of
information, as proved by the development and use of the SET-ATS protocol. Modern product data
technology, commonly associated to STEP, ensures the development of non-ambiguous domain-specific
protocols which provide solutions not only to the information exchange problems but also to the integration
of applications. However, the matter of successfully introducing a TNF in the spacecraft thermal analysis
community remains largely a problem of consensus. Currently, a harmonised effort CNES/ESA is under
way to provide a unique description of the information requirements in this domain. If an agreement is
reached on the suitability of this logical description, the STEP technology is ready to produce an
implementation of the TNF.
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Summary

The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic
stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation
formulation is described. The performance of the spectral scheme is compared with that of a 2nd order
finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the
performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude
smaller than finite difference error for a grid resolution of N = 15 (number of points used). The
performance of the spectral formulation far exceeded the performance of the finite dlfference formulation
for this problem. The spectral scheme required only slightly more effort to set up than the 20d order finite
difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher
order finite difference schemes.

1.0 Introduction

The theory of hydrodynamic stability has helped to explain and predict a variety of fluid
flow phenomena. Recently it is being used to guide the modern computational fluid
dynamicist in choosing the appropriate parameter values which are needed to simulate
fluid flow behavior of interest NASA TM-4569, 1994). Many current applications of
hydrodynamic stability theory are possible because the field has benefitted greatly from
the development and refinement of computational tools in addition to the existence of
increasingly powerful computers. Spectral methods is one such set of tools that has been
successfully applied to obtain high accuracy hydrodynamic stability results to previously
intractable problems.

The purpose of this paper is to show, by example, the use of a spectral collocation
formulation to solve hydrodynamic stability problems. Our discussion will be confined to
the linear stability analysis which is the foundation of hydrodynamic stability theory (Lin,
1945). The linear stability problem ultirhately reduces to a matnx eigenvalue problem,
and the peril of the elgenvalue problem is that it requires O(N3) operations to obtain the
eigenvalues where the matrix is N x N. As shown herein, the high accuracy of spectral
methods results in small N, therefore considerably less CPU time is required to solve for
the eigenvalues when compared to finite difference methods.
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The Benard problem is used to illustrate the implementation and performance of the
spectral scheme. The problem is also solved using a 2nd order finite difference scheme
which required slightly less time to implement. Results of the two numerical schemes are
compared to the exact solution of the Marangoni-Benard problem (Pearson, 1959).

The Benard problem is described, and the governing equations and boundary conditions
are developed in the following section. After a brief description of the finite difference
scheme, the spectral collocation formulation is discussed. Results from both numerical
schemes are then compared to an exact solution of the Marangoni-Benard problem. The
spectral scheme yields results with considerably better accuracy using an order of
magnitude less points than the finite difference scheme.

2.0 Description of Benard Problem & Development of Equations

A temperature difference is imposed normal to the free surface of a thin liquid layer of
fluid of infinite horizontal extent and finite thickness, d, as shown in Figure 1.The initial
steady state or base state of the system is one of no fluid motion, with a linear
temperature profile across the layer. The velocity and temperature profiles illustrated in
Figure 1 can immediately be expressed as, U, =0 and T, = T,, —Bz". Using the notation
of Pearson (1958) and Chandrasehkar (1981), U, and T, are respectively, the base flow
velocity and temperature. The temperature gradient of the base state, B is defined as
B=-dT, /dz' or B =AT,/d where AT, = T,, - T;.. The asterisk, "*" denotes dimensional
quantities. The lower surface is rigid and is held at a constant temperature. The upper
surface is free and exchanges heat with the environment . The free surface is assumed flat
which is physically justified for many terrestrial problems. We first give the
nondimensional form of the governing equations and in the next section we linearize
about the base state just described in order to determine whether small disturbances to the
base state will grow or decay. Specifically we are interested in the critical values of the
nondimensional parameters where the change of stability occurs.

cT, TbO
s

Figure 1 Base State For Thin Liquid Layer Of Infinite Extent

Nondimensional forms of mass, momentum, and energy equations for an incompressible
fluid with the Boussinesq approximation are given in equations (1) through (3). The
derivation of these equations with the Boussinesq approximation and constant viscosity
and their subsequent nondimensionalization are well known and we refer the interested
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reader to Chandrasekar (1981), and Drazin & Reid (1982) for details. All
thermophysical properties are assumed constant apart from density and surface tension.

v.U=0 (1)
DU 27

T)—t—z—VP+k RaPr(T-T,,)+PrV?U )
DT _%or (3)
Dt

U, T, P, t are the velocity vector, temperature, pressure, and time respectively. The
reference values used to nondimensionalize the variable; length, velocity, temperature,
pressure, and time are d, k; /d, Bd, pyk,/d’, d*/x,, respectively. p; is the fluid
density and «x, is the fluid thermal diffusivity. The subscript 0 indicates that the
properties are chosen at the lower surface temperature, T, The characteristic value of
the dynamic viscosity of the fluid, p, is denoted as 1,. These reference values are
consistent with those used in the buoyancy instability studies presented in Chandrasekhar
(1981) and Drazin and Reid (1982), and the surface tension instability investigations of
Pearson (1958) and Scriven and Sternling (1964). Two dimensionless groups appear in
the momentum equation, the Prandtl number, Pr, and the Rayleigh number, Ra, which
are defined as follows:

4
Pr - }“lo‘ Ra pOBd éogl

PoXKo opo
£, is the volumetric thermal expansion coefficient and gz is gravitational acceleration in

the negative z-direction. The dot product of the unit vector in the z direction, k, and the
buoyancy (RaPr) term in equation (2) indicates that buoyancy only acts in the vertical
direction. Therefore the Rayleigh number only occurs in the z-momentum equation.

The nondimensional boundary conditions are given by equations (4) and (5). Equations
(4a,b,c), represent the no-slip conditions and impenetrable wall condition at z=0.
Equation (4d) is the constant temperature condition along the wall. The normal stress
boundary condition reduces to (5a) when the free surface at z=1 is assumed to be flat.
Boundary condition (5b) is the heat flux balance at the free surface, where Q* is the
dimensional surface heat flux to the environment and k is the fluid thermal conductivity.
Equations (5c and 5d) are the tangential force balances along the free surface, in the x and
y directions, respectively.

Atz=0; U(0)=(U,,U,,U,)=0, T(0)=T, (4ab,c,d)
az=1:  UM=0. T o (5a,b)
oz OB
8U. 8U. ) (éu, au,
_|:( axz + az! )1+( 5 + e ) :l MaV, T (5¢,d)
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The operator, V,, is the surface gradient defined as Igax— + 3% where, i and ] are unit

vectors in the x and y directions respectively. The Marangoni number, Ma, which occurs

: : : s By, .. dc *
in equations (5c,d) is defined as: Ma = ——=. The parameter, v, is defined as — ,
: KoHo 0T,

and is often referred to as the temperature variation of surface tension (Nield 1964 and
Adamson 1967) or differential coefficient of surface tension change with temperature

(Scriven and Sternling 1964). The surface tension, o', does not appear in our equations or
boundary conditions since we have assumed a flat interface. Further discussion of the
nondimensionalization of the free surface boundary conditions is found in Scriven and
Sternling (1964), and Koschmeider (1993).

The surface heat flux, Q*, has to be expressed in a form that is suitable for linearizing the
heat flux boundary condition, equation (5). This is accomplished by expanding Q" about
the base state surface temperature, T,,. The first order expansion is given by equation
(6). As previously noted, the base state varies only in the z-direction. Therefore, Q"(T,,)
can be re-expressed as equation (7), using Fourier's law.

Q' = Q'(T.:s)+%$.—T;'(T° -T;) ©)
Q()=k =k ™
52 2’ =d

Substituting equation (6) into equation (5b), using ki in place of Q"(T;,) and defining

h' =22 - the heat flux boundary condition becomes:

L
o 1+Bi(T,-T,)=0 ®)
0z *

The dimensionless group, Bi, is defined as Bi, = E and is referred to as either the
0
surface Biot number (Pearson, 1958 and Nield, 1964) or the surface Nusselt number

(Scriven and Sternling, 1964).

We note that the three-dimensional mass, momentum, and energy equations are given in
equations (1-3), yet the boundary conditions are only specified in the z-direction. After
linearizing the problem and applying some vector operations, it is shown in the next
section, that the governing equations and boundary equations in the x and y directions do
not affect the stability of the base state. Equations (1, 2, 3, 4 . and 5a,c,d and 8) make up
the system which we will linearize in the next section.
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2.1 Linearization of The Governing Equations

The dependent variables are written in terms of the following base flow and perturbation
variables: U=1, T=T,+6, AP=AP +Ap

After substituting for T, and VT,, the disturbance equations become:

%?:-—@p+f<-RaPr6+Pr§2ﬁ )
P _, -5 (10)
o

k is the unit vector in the z-direction shown in Figure 1. The curl operator is applied
twice to the momentum equation, equation (9), which yields equation (11).

&(v*a)
ot

=k-RaPrv’0+Prv'a (11)

The first curl operation yields the vorticity equation and eliminates the pressure terms.
The second curl operation decouples the momentum equations from each other. The x
and y momentum equations become uncoupled from the z-momentum and the energy
equations. The z-momentum and energy equations remain coupled through the buoyancy
term in equation (11), the convective term in equation (10), and the tangential boundary
condition (discussed below). Furthermore, the relevant stability parameters, Ma and Ra,
do not appear in either the x or y momentum equation or their associated boundary
conditions. Given these considerations, equation (11) reduces to the scalar equation in ug,

equation (12).

G(Vzuz)

=RaPrvi0+PrViy, (12)

The boundary conditions for the perturbed variables associated with equations (10 and
12) are given by equations (13) through (14).

Atz=0, u, =0; M. _0;  6=0 (13a,b,c)
oz
Atz=1, u, =0; g’i+Bise(l)=O (14a,b)
z .
o’u
—[Vfluz - -EZTZJ = Man,G (14C)
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2.2 Normal Mode Analysis

Since equations (10) and (12) are linear, we assume solutions for u, and ¢ are of the
form:
uz - w(z)ei(u‘x+a!.y)+ll and e - ¢(Z)ei(a,x+a‘vy
ok and oy are the dimensionless wavenumbers in the x and y directions, and A is the
dimensionless frequency. Substituting these into equations (10) and (12 ) results in the
following ordinary differential equations.

)+lt

A (z) - D*¢(2z) +a’¢(z) - w(z) =0 (15)
»(D*w - a?w(z)) = RaPr(D*¢ - a’9) + Pr(D*w - 20’ D*w + a* w(2)) (16)

Where D =2 ando? =a) +al.
dz

The boundary conditions at z = 0 become:
w(0)=0, Dw(0)=0, ¢(0)=0. (17a,b,c)

At z=1, the flat interface condition, heat flux condition, and tangential stress boundary
condition are:

w(l) = 0, D¢(1)+Bid(1)=0, D*w=-a’Ma¢(l) (18a,b,c)

Equations (15 through 18) are solved to determine whether the velocity and temperature
disturbances grow or decay for given combinations of the relevant parameters. The
relevant parameters are Ma, Ra, and a. Our problem is also referred to as a temporally
developing flow problem since the disturbance growth or decay is in time. For temporally
developing flows, ax and ay are real and the eigenvalue. A, is complex. If the real part of
A is positive the disturbance grows, if the real part of A is negative the disturbance decays
in time and if A is zero, the disturbance persists unchanged in time.

3.0 Discrete Formulations

Two discrete formulations will be applied to the Benard problem, a 2nd order finite
difference scheme, and a spectral collocation scheme. Irrespective of the discrete
formulation the goal is construct a set of linear equations in form of the general
eigenvalue problem, Ax = ABx. Once the eigenvalue problem is setup, solution
mechanics are identical. If B is cheaply invertible, it usually pays to reduce the problem
to a regular eigenvalue problem of the form Cx =Ax, where C = B-1A. In this study we
used standard QR and QZ eigenvalue subroutines from the IMSL library to solve for the
eigenvalues.
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3.1 2nd Order Finite Difference Scheme

Equations (15 through 18) were discretized using a standard central difference scheme.
Boundary conditions result in solving 2N-1 equations for this formulation. The
discretized governing equations, equations (19) and (20), were arranged in the form

Az = ABz, which is the generalized eigenvalue problem. Coefficients, a through g, and r
are constants.

aw,_, +bw,_ +cw, +dw,, +ew,, +r¢, = AMfw,_ +gw, +fw,,,) (19)
o, +g¢; +fo;,, +w; = }"(d’i) (20)

Here the boundary conditions for Eq (15) are applied only to thei=0, I, N-1, N
equations and for Eq (16) only to i=0andi=N.

B is a nonsingular matrix so it is possible to reduce the system to a regular eigenvalue

problem of the form Cz = B™'A = Az. Assuming a flat interface ensures that B is a
tridiagonal matrix which can efficiently be inverted using a tridiagonal solver. The
problem was discretized in terms of one fourth order equation, and one second order
equation, which yields A and B matrices of rank 2N+2. Three of the six boundary
conditions are Dirichlet boundary conditions which reduce the A and B matrices to rank

2N-1.

3.2 Chebyshev Collocation Spectral Scheme

The key to all spectral techniques lies in the possibility of expanding smooth functions in
terms of rapidly converging sums of certain orthogonal basis functions. For example,
consider any reasonable function f(x) defined in the domain -1 <x <1 ( see Canuto et.
al. for a precise definition of "reasonable"). The function can be represented as a sum of
Chebyshev polynomials, T, (x), of the form:

i) = ST, (0 @1

n=0

The crucial thing is that the sum converges very rapidly if f(x) is smooth so one can
truncate it at N terms and accurately represent the function with a minimal set of numbers
{%ﬂ; n= 0....,N}- Such an expansion can be viewed as a very efficient and only slightly lossy

compression technique for functions.

Pure spectral methods proceed by expanding the unknowns in terms of truncated sums of
certain polynomials having excellent convergence properties (often simple combinations
of Chebyshev polynomials that automatically account for any boundary conditions that
must be satisfied by the function). The sums are then substituted into the differential

equation and the coefficients are picked to minimize the residual. The fundamental

quantities of interest in this procedure are the coefficients in the expansions of the
dependent variables.
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Spectral collocation methods on the other hand, concentrate directly on the physical space
representation of the unknowns and as a consequence are more easily understood by the
naive user. For example, in a collocation technique our hypothetical function, f(x) is not
stored as {g n= 0,...,N}, but instead as {f = f(x,) : i = 0,...,N}. The exact correspondence

between the two representations is maintained by choosing the physical space grid { xi}
in an optimal fashion that is related to one of the Gaussian integration formulas. A typical
formula of choice for Chebyshev expansions on the domain {-1,1] is the Gauss-Labatto
grid, x, = cos(in / N). The spectral space and physical space representations can be
interchanged with essentially no error (except perhaps for aliasing errors). Moreover, if
the expansion is in terms of Chebyshev polynomials or trigonometric functions, the
transformations to and from spectral space can be carried out efficiently by using Fourier

Transforms (FFT's).

Solving differential equations obviously requires that the derivatives are evaluated. One
method of evaluating {f = f(x;)} is to proceed as

fohofof
That is, one first transforms to spectral space where a derivative is taken rapidly by using
some simple properties of the basis functions. The new series produced in this fashion is
then transformed back to a physical space representation. In the case of trigonometric or
Chebyshev expansions, the procedure is dominated by the FFT's used in the

transformations, so the total cost is O(N log N) operations.

There is a mathematically equivalent approach which uses matrix-vector multiplies to
express
N
£=2 D 22)
j=0
where the elements of the derivative matrix D can be found in spectral texts such as
Canuto et. al. To evaluate the derivatives on the entire grid using this method will take

O(Nz) operations. However, the matrix-vector multiply approach is the only one possible

for eigenvalue problems where the aim is to turn the linear differential operator into the
equivalent matrix operator on the discrete grid. Thus for example. the continuous

equation, Af = f”, becomes the discrete equation, Af = D’f, so that in theory one simply
fills and then squares the D matrix before feeding it to a standard matrix eigenvalue . In
practice, the greatest programming labor is in the implementation the boundary

conditions.

For the Benard problem, it is convenient to define the matrix operator

L=D*-a’ (23)
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where I is the identity matrix. The continuous equations, (15) and (16) then become the
discrete equations, (24) and (25)

Pr(L’w-a’Ral¢,) = ALw 4)
Lo +Iw = Ao (25)

and these equations can be recast into the standard form Au = ABu given by equation

(26).
Prl’ -o’RaPrl [w o o .
I L o] L0 1]¢ (25)

This translation of a continuous problem into a discrete one is very natural and can be
carried out even more rapidly than the corresponding process for a finite difference
scheme. However, this matrix eigenvalue problem as it stands does not take the boundary
conditions into account. Most of the coding complexity that is present in spectral
techniques (which by nature are global approximations) arises because of the need to
implement boundary data (which are local point conditions).

The boundary conditions and governing equation are first mapped from the z variable in
the domain [0,1] to x defined on [-1,1] by x = 2z-1. The mapped boundary conditions
become:

N
Atx=-1 (i=n): w, = ZDNiwi = ¢i =0 (27)

i=0

N N
Atx = +1 (i=0): w, = Bi#, +ZD0i¢i = azMaq)OZD(Z)iwi =0 (28)
i=0 =0

We immediately see that w, = w, = ¢, = 0. The remaining equations can be used to
simultaneously solve for w,, w,_,, and ¢, in terms of the other w;'s and ¢,'s as shown
in equation (29). Equations (29) reveal that elements, w, and wy,_,, are coupled to the
¢,'s through the last boundary condition in equation (28) while ¢, remains uncoupled
from the w;'s.

N-2 N-2 bl
w, = ZCiWi +0p, Wy = diw, +0,, ¢, = Zei¢i (29)
i=2 i=2 i=1

The boundary condition information is used to reduce the rank of the eigenvalue problem
which is given by equation (30).

2N+l 2N+
ZAu’“j =X ZBijuJ (30)
=0 =0
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The first N+1 components of the vector u here corresponds to {w,:i =0,...,N} and the

last N+1 components corresponds to {6,:i=0,...,N}. Applying the six boundary
conditions, we can eliminate the rows corresponding to w,,w,,Wy_,,Wy, ¢,, and ¢, and
expand equation (30) as given below.

Agu +An Uy, AN UG T ZAijuj =

J-
j#N-1LN.N+l

(31

2N+1

Al Byu, + By uy +Byun, 4 ZBijuj
=2

j2N-1.N.N+1l

where we have already used the data. u, = uy = u,,, =0 (which corresponds to
w, = wy = ¢, =0). Using the remaining boundary conditions, equations (29). take the
form

N-2 2N N-2 2N
u = cu= D TU, Uy, = 2du= >du,
=2 N- .l )?J N+I =2 j=N Jl‘gl N+1
j= #N=1.N,
Nel (32)
Uy, =Zejuj = ZCJUJ
=l j2N- l N N+i
c. - d, 0 ifj=2,...,.N=-2
where T,={' & d,={' & §-= L (33)
€ N-3 €;-N-3 €i.n3 Ifj=N+2,.. 2N
The matrix eigenvalue problem can be rewritten as
2N+1 2N+1
ZA u; = A ZBU J (34)
j=N- l N N+l jnN-l N N+l

where A, = A, +A,T; + Anod;+Ay, & and B, =B, +B,T,+By_,d, + By, . The
global matrix problem is finally transformed to a reduced eigenvalue problem Au= ABu
where the matrices are (2N —4)x (2N —4) and all six boundary conditions have been
incorporated into the problem.

The principle difficulty in using spectral collocation techniques for solving stability
problems is the implementation of derivative boundary conditions. A condition such as
‘w(1) = 0 is not a problem as all that is required is the reduction of the global matrices by
eliminating one row and one column. Derivative data on the other hand, resuits in altering
all the elements of the matrices due to the global nature of the underlying series
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approximation. All data contributes to the value of the derivative at each point
Nevertheless, for the Benard problem, the spectral collocation technique is only slightly
more difficult to code than a second order finite difference scheme. As is observed in the
subsequent results, the additional coding effort is amply rewarded.

4.0 Results

Under certain conditions, exact solutions to equations (15) through (18) have been
obtained. Pearson (1958) derived an exact solution to the Marangoni-Benard problem
(Ra = 0) for the case of neutral stability, A = 0. His solution reduces to equation (35) for
an insulated free surface, Bi = 0. The critical value of the Marangoni number, equation
(35), versus the wavenumber is shown in Fig. 3 and is referred to as a neutral stability
curve since A = 0 for all points along the curve. For values of Ma above this curve are
unstable since infinitesimal disturbances. Our objective is to use the above exact result to
investigate the accuracy of the aforementioned discrete formulations, so we do not
consider alternative exact or approximate solutions which exist for the general problem.
The physical interpretation of these results in addition to results from other exact or
approximate solutions to the Benard problem are discussed in Pearson 1958, Scriven &
Sternling 1964, Smith 1966, Chandrasekhar 1981, and most of the other references cited
in section 6.0. We now compare the numerical results to the exact solution.

_ 8a.2 cosh(a)(a — sinh(a) cosh(at))

Mac 3 - 3
o’ cosh(a) —sinh”(a)

35)

400

Marangoni-Benard Neutral Stability Curve
350 — (Exact Soiution)

300 -

250

Ma

200 -

150

100

50 T T T T T

Figure 2 Marangoni-Benard Neutral Stability Curve,
Exact Solution for Bi=0 (Pearson, 1958)
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Neutral stability curves for the Marangoni-Benard problem which were generated using a
2nd order finite difference scheme and spectral scheme are shown in Figs. 3 and 4,
respectively. The number of points across the fluid depth, N, (in the z-direction)
represents the spatial resolution used to generate a given curve. In Fig. 3 the neutral
stability curve converges to the exact solution as the spatial resolution increases from

N =4toN = 100. The N= 50 and N = 100 curves are visually indistinguishable from the
exact solution. Fig. 4 reveals that the neutral stability curves computed using the spectral
formulation also converge to the exact solution as the spatial resolution increases. The
spectrally generated neutral stability curves shown in Fig. 4 are visually identical to the
exact solution for spatial resolutions as low as N = 10. In both Figs. 3 and 4, the
numerically generated neutral stability curves tend to diverge from the exact solution with
increasing wavenumber. It is also observed that the finite difference solution converges
from above the exact solution while the spectral solution converges from below exact
neutral stability curve.

400 Noa 77 400
N=5 / // ’ — N=4
"N=7 I/ —— N=5
300 - N=10 / / / 300 - ——-N=7 ,
N=15 /,{/ -—="N=10 /-
N =50 /75 N=15 ////
© N =100 /7 © p
s 200 S s 200 + ///
S -
-~
~
100 - 100 — ==
0 I I ! ! i L 0 T T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 § 6 7
a a
Figure 3 Marangoni-Benard Neutral Stability Curves Figure 4 Marangoni Neutral Stability Curves
Computed Using A 2nd Order Finite Difference Scheme. Computed Using A Spectral Collocation Scheme. N
N Is The Number Points Through The Fluid Layer. The Number Points Through The Fluid Layer.

The error in the Marangoni number for the finite difference and spectral schemes is
plotted as a function of wavenumber in Figs. 5 and 6, respectively. In both figures, error
is plotted using a logarithmic scale while the wavenumber. o, is plotted with a linear
scale on the abscissa. The error (ordinate) range differs between the two figures so that
the error characteristics of each discrete scheme could be observed. The error is defined

as Ma, -Ma.., where May is the Marangoni number computed from a discrete
Ma, ..

formulation for a given spatial resolution (N points) and Magxact is computed using
equation (35). Both discrete schemes are observed in Figs. 1 through 4 to converge to the
exact solution as the spatial resolution, N, increases. The finite difference errors for each
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curve increase approximately an order of magnitude over the given wavenumber range as
observed in Figure 5, while the spectral error shown in Figure 6 increases four to five
orders of magnitude with wavenumber. For N greater than approximately seven. the
spectral error remains considerably less than the finite difference error for the range of o

considered.

Ma/Ma,, .- 1

10° —
——
—
— —_ ——
-1 ~ - -
107 - P -
~ // _ -
-
e
102 ~7
e -
— —
1073 - v// -
-
~ ~
-
- _ -~
10 _
1 | I
0 1 2 3 4 5
a

— N=4
——N=5
——- N=7
-—— N=10
N=15
—— N=50
—— N=100

Figure 5 Marangoni Number Error vs. Wavenumber For The 2nd Order Finite Difference Solution.
N Is The Number Of Points Through The Fluid Layer
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104
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107
10°
10°
10-10
10-1
10-12

Ma/Ma,, . -1

— N=4
——N=5
—— N=7
== N=10
rrrrrr N =15

Figure 6 Marangoni Number Error vs. Wavenumber For The Spectral Collocation Scheme. N Is
The Number Of Points Through The Fluid Layer
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Selected error values of the two schemes for wavenumbers of 2 and 5 are tabulated in
Tables 1 and 2, respectively. The errors for, o = 2, the critical wavenumber were smaller
than those of the larger wavenumber, a = 5. In Fig. 7, the Ma error is shown on a log-log
plot as function of the spatial resolution (N grid points) for both discrete formulations .
Comparing Ma error values at a wavenumber of 2 and N = 10, the error for the spectral
scheme is seen to be five orders of magnitude smaller than the finite difference error.
Furthermore, after increasing the spatial resolution of the finite difference scheme to

N = 100, still gives a spectral error for N =10 that is 3 orders of magnitude smaller. The
reduction in error for the finite difference scheme is essentially proportional to N2, as
expected since the scheme is 20d order accurate. A slope of -2.02 was computed for the
finite difference curve in Fig. 7 which is within 1% of the expected value of 2. The slope
was computed from a least squares fit of the finite difference data in Table 1. The error
for the spectral formulation is expected to decrease exponentially with increasing N
(Boyd, 1989, Canuto et. al., 1987). However the error results in Table 2 show that the
exponential rate of convergence is exceeded for this particular problem. Fig. 7 vividly
illustrates that the spectral scheme results in a significant reduction in error with
considerably fewer grid points than the central difference scheme for this particular
problem. The spectral formulation has also been shown to out perform finite difference
methods when applied to other hydrodynamic stability problems (Canuto et. al., 1987,
Boyd, 1989). The exceptional performance (greater than exponential convergence) of the
spectral collocation scheme for this problem was not anticipated by the authors.

Table 2 Selected Marangoni Number Errors
For Wavenumber, a=5

Table 1 Selected Marangoni Number Errors -
For Wavenumber, a=2

Spatial resolution Finite Spatial resolution Finite
N Difference Spectral N Difference Spectral
5 1.085x10°! | 2.920x10-2 5 5.756x10"! | 2.808x107!
10 2.600x10-2 | 3.400x10"7 10 1.309x10°1 | 2.525x10°4
15 1.115x10-2 | 4.529x10"!} 15 5.710x10"2 | 6.434x10°°
50 1.025x1073 50 5.075x10°3
100 2.561x10-4 100 1.268x10"3

As stated throughout, the ability to reduce the size of N is crucial to the eigenvalue
problem, AX = ABX. Inverting B takes ON3) operations; the matrix multiplication of
C=B"A requires O(N 3). and solving the regular eigenvalue problem, CX = AX, requires
O(N3) operations. Neglecting all other operations than those identified above. for a grid
resolution of N=10, it requires appropriately 3000 operations to compute the eigenvalues
while it requires O(3x109) operations for N=100. The number of iterations required to
converge to Ma, at one wavenumber is O(10), ie.. the matrix eigenvalue problem is
solved approximately ten times for each wavenumber.
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Figure 7 Error in Mag (a =2) As A Function Of The Number of Points
Across The Fluid Layer, N

5.0 Concluding Remarks

A spectral scheme, the Chebyshev collocation formulation was used to perform a
hydrodynamic (linear) stability analysis of the Benard problem. The problem reduces to a
generalized eigenvalue problem, Ax = ABx, which can be reduced to a regular eigenvalue
problem, Cx = Ax by inverting B. Implementation of the spectral scheme was described.
There is a bit of a learning curve that must initially be overcome to comfortably setup the
spectral formulation if one has no previous experience with spectral methods. Afterwards,
the spectral scheme requires only slightly more time to set up than the 2nd order finite
difference scheme and is likely to be easier to program than higher order finite difference
schemes. A comparison of the results from the spectral and finite difference scheme
reveals that the spectral scheme out performs the finite difference scheme by a
considerable margin. The error of the spectral scheme is at least three orders of magnitude
smaller than the finite difference error for N =10 and seven orders of magnitude smaller
than finite difference error for N = 15.
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SUMMARY

An algorithm has been developed for time-dependent forced convective diffusion-reaction
having convection by a recirculating flow field within the drop that is hydrodynamically coupled at
the interface with a convective external flow field that at infinity becomes a uniform free-streaming
flow. The concentration field inside the droplet is likewise coupled with that outside by boundary
conditions at the interface. A chemical reaction can take place either inside or outside the droplet,
or reactions can take place in both phases.

The algorithm has been implemented, and for comparison results are shown here for the
case of no reaction in either phase and for the case of an external first order reaction, both for
unsteady behaviour. For pure interphase mass transfer, concentration isocontours, local and average
Sherwood numbers, and average droplet concentrations have been obtained as a function of the
physical properties and external flow field. For mass transfer enhanced by an external reaction, in
addition to the above forms of results, we present the enhancement factor, with the results now
also depending upon the (dimensionless) rate of reaction.

INTRODUCTION

There are many industrial and environmental processes in which two-phase fluid-liquid
systems are in use. Gases may be dispersed as bubbles in liquid phases, such as occurs in bubble
columns and sparged vessels. Liquids may be dispersed in gases, such as occurs in scrubbers and
in the atmosphere. And a liquid that is immiscible or partially miscible in another liquid may
be dispersed in a liquid-liquid spray column extractor or reactor. The design of such systems
may involve heat transfer, either intentionally or incidentally, but the widest range of applications
involves mass transfer.

Interphase mass transfer may proceed into or out of the dispersed phase. One (or more)
chemical reaction(s) may take place in either the dispersed or the continuous phase in order to en-
hance the rate of mass transfer. In two-phase reactions, certain of the reactants may be transferred
from one phase into the other, where the reaction takes place, and the reaction products may then
be transferred back into the first phase. Reactions may also occur in both phases.

Because of the finite, generally small volume of each drop or bubble, interphase mass transfer
unaccompanied by chemical reaction is inherently unsteady, regardless of the direction of mass
transfer. Even if there is a reaction that admits of a steady state in the drop or bubble, unsteady
behavior may nevertheless be of practical even primary importance.

The continuous phase is inevitably in motion relative to the dispersed phase, and for clean
systems (containing for instance no surface active agents) the motion in the two phases will be
hydrodynamically coupled.
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The general formulation could take into account either linear or nonlinear chemical reactions
in either or both phases, and it could incorporate any velocity field that can be expressed as a
function of r and ¥. Neither are variable properties excluded.

In order to demonstrate the utility of the algorithm, for concreteness we undertake the
mathematical description of a liquid-liquid system in which a first order reaction takes place in
the continuous phase. The dispersed phase is sufficiently dilute that the droplets which sediment
(either falling under their weight or rising because of buoyancy) may be assumed isolated in an
infinite medium, both with regard to fluid mechanics and to diffusion and reaction. The droplets
are taken small enough that interfacial tension dominates shape effects and they are spherical. Al-
though the approach we take and the methods we use do not require that that viscosity dominates
flow effects and that the velocity fields have low Reynolds numbers, we nontheless consider the
hydrodynamically coupled Hadamard - Rybczinsky profile for circulation within the droplet driven
by an external velocity field that becomes a uniform streaming flow far from the droplet. Physi-
cal and chemical properties are assumed constant, which would be the case for dilute isothermal
systems, and we thus analyze interphase mass transfer for the forced convective diffusion-reaction
single-drop system. We investigate specifically the role of the reaction rate, as measured by an
appropriate Damkoéhler number, the solubility of the solute in the phases, as expressed by the lin-
ear distribution coefficient (Henry’s law), the ratio of convection to diffusion, as measured by the
Peclet number, and the ratio of the viscosities and that of molecular diffusivities of the two phases.

GOVERNING EQUATIONS

The dimensionless forced convective diffusion-reaction equations governing the solute con-
centrations in the drop (0 < r < 1) and the continuous (1 < r < oo) phases, i = 1,2, respectively,
can be represented in the form

dcld)
ot
where 1 = 1 corresponds to the internal domain 0 < » < 1, and ¢ = 2 to the externalone 1 < r < oo.
The dimensional parabolic partial differential equations have been rendered dimensionless
using the droplet radius R as the characteristic length scale. The concentrations are measured in
units of the initial driving force,

+ KO v).vc) = g{g2:06) - gi)6) (1)

~ HOEG) _ ga
() = ) ;
= e m 1, (2)
in which
. 1, i=1
HO = (3)
H, i1=2
with H the Henry's "law” distribution coefficient, and
t=0: &MV=g, &2 =é,. (4)

The characteristic time scale can be selected, for example, on the basis of the fastest physical
or chemical process, occurring in the system, viz.,

Te = min(Tc(;Zw , rgf)f , r,(;zi , 1=1,2), (5)
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in which

: R : R? : _

}T‘S:’Z“' = m’ Tng:f)f = m7 Txg::Z\ = ma 1=1,2. (6)

The diffusivities and rate constants for the first order chemical reactions are denoted by D) and

k%), respectively, and the K’s represent different combinations of standard dimensionless parameters
for different choices of 7,, as indicated in Table 1.

Although our numerical implementation of the algorithm requires only that the velocity
fields in the two phases be separable, we have selected the Hadamard - Rybczinsky solution for '
the convecting velocities in the dispersed and continuous phases to establish connections with
earlier research 7, 8, 9]. In this instance, the characteristic velocity in each phase, with Uy the
freestreaming uniform flow at infinity, is taken as

U = [ Ve, i=1,2, (7)
in which
M(y) = — 1 (2)() =
() TR A u)=1, (8)
with the viscosity ratio
p=p@ 9)

The equations (10) are the ones used in the sequel, reflecting the selection of 'rgf} as the
unit of time:

Acl)  Pel?) N O dcld)
) -2 /1 )2
or + 2 (‘u, or T 1-4 BA)
D) [18 (,080) 18 2,0ct)
’5?‘){‘5' ( o ) tea | )%y }} (10)
s D6 /. :
_paW2 (), Heo -
Daj/ ) (c + G- His) ' 1=1,2,

" with ) = cos 9, subject to the boundary conditions at the droplet interface,

c(1) = ¢(2)
r=1: (11)
H-D ac(l) _ 5¢(2)
T ~ Or
and at the limits of the overall domain,
r=0: cW<oo (12)
rooo: o0 (13)

Periodic boundary conditions in the angle variable,
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dcl)
=0, 1=1,2, (14)
o9 9=0,x

are satisfied automatically after introduction of the new independent variable A.
The concentrations are subject to the initial conditions:

t=0: MN=1, =09 (15)

The actual direction of mass transfer may be out of or into the drop, depending upon the
driving force (éo — Héoo), even though the formulation of the problem suggests transfer from the
droplet.

The opposite direction of mass transfer in the actual problem would lead to the appea.rance

of the inhomogeneous part in the reaction terms in (10) (but only when the corresponding K. © #0).
THE ALGORITHM

The problem is linear, and we use the Galerkin spectral method for the spatial discretization.
The advantages of this method are well known [1, 2].

Boundary conditions at the origin of the droplet (12) and at infinity (13) and the symmetry
boundary conditions (15) are implemented by the Lanczos tau-method [1, 2, 14].

We express the unknown functions ¢()(r, ), 7) in a customary manner,

M
i, 0 1) = 3 (r,r) Pm(}), i=1,2, (16)
m=0
in which the P,()) are the Legendre polynomials of order m and the unknown coefficient functions
cs,';)('r, r) are termed "radial functions” for brevity in the sequel.
The discretization in the radial direction is performed in somewhat different ways for the
internal and external domains.
Using equation (10) for mass transfer inside the droplet (i = 1), it is a simple matter to

show that functions chr )(‘r,r) obey the following restrictions :

cfl)('r,r =0)=0, [l#0, (17)
acfl)
o (18)

cg}:)(r, r) - even function of r
k=0,1.... (19)
cgl)“('r, r) - odd function of r
On the basis of these restrictions, the radial functions inside the droplet were approximated
by a series in even Chebyshev polynomials:

N
cm('r ) = bmo- ao(T) + 7™ Z (1) (7)) Ton-2(r), m=0,1,..., M, (20)

n=1

in which the Tp(r) are Chebyshev polynomials of the first kind of order p, and
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Kyj=2, j=0,1,... (21)

K1 =1, K2j41 = 3, 1=12,... (22)

Using (20) we automatically satisfy boundary condition (12) and avoid the singularity at
the origin of the drop; the function ao(7) represents the value of the concentration at the origin.

Such an expansion on the interval 0 < r < 1 is valid as the even Chebyshev polynomials
form a complete set for the type of functions considered [10].

The use of half the commonly used interval {—1, 1] permits us to double the highest order
of the polynomials used, leaving the number of terms in the series unaltered.

The nonuniformity of the distribution of nodes in the spectral method (their number in
close proximity to the surface is higher than near the origin) matches the physics of the problem
as the concentration gradient near the interface is much larger.

For the semi-infinite external domain we implement the widely used procedure of truncat-
ing it at an appropriately large radius 7o, far enough from the interface to make negligible the
disturbance introduced by truncation. The boundary condition at infinity (13) is now imposed on
this artificial boundary. It could be imposed as "hard”, "soft” [12] or "behavioral” [1, 13]. We use
the "hard” one,

F=te: =0 (23)

because it immediately results in the original boundary condition (13) if roq — oo.

It is necessary to realize that by doing this we are changing the physical sense of the problem.
The decrease to zero of the concentration infinitely far from its source is caused physically by the
spreading of a finite amount of the species over an infinite spatial volume. After introduction of
the boundary sphere at 7 = ro,, we model this decrease by imposing what amounts to an infinitely
fast heterogeneous reaction on the artificial boundary ro. The only justification for this is an a
posteriori one, viz., by checking that the increase of 7o, does not alter the solution in the vicinity
of the droplet and in particular the interphase mass transfer.

Our computations have confirmed this and show that when 7, is chosen sufficiently large
the choice of the particular type of boundary conditions mentioned above does not influence the
resultant concentration distribution in regions where its value differs significantly from zero.

The domain 1 < 7 < 7 is mapped onto the interval —1 < z < 1 in such a way that the
point z = 1 matches r = 1 and the point z = —1 matches 7 = 7. Among the wide variety of
possible mappings two are used more often than others, the exponential and rational ones [1, 2].
A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages
over the former.

Specifically, we use

r—(1+6)
FEn

where § is the parameter representing the distance between the droplet surface and point mapped
into z = 0. It is worth mentioning that we have also implemented the exponential mapping and

could find no advantages for it over the rational mapping.
The radial functions in the external domain are expanded as

< =

(24)
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N(2)
(1, z) = Z ¢ (1) Za(2z), m=0,1,..., M, (25)

where the Z,(2), n=1,2,...,N (2) are linear combinations of Chebyshev polynomials, each satis-
fying the boundary condition following from (13):

Za(z=-1)=0, n=1,2,...,N®, (26)
We take

Zyw(2) =Ta(z) -1
(27)

Zak-1(2) =Ta-1(2)+1

Thus, we reduce the system of partial differential equations for two initially unknown func-
tions c(1)(r, A,7) and ¢(®)(7, ), 7) to a larger system of ordinary differential equations in 7, for

ao(r), ¢, $B ., m=0,1,..., M, (28)

n=12...,NY n=12.. N3

The total number of these unknown functions is 1 + (M + 1) (N + N(2),
In order to obtain equations for these functions we use the conventional Petrov — Galerkin
method, i.e., the basis functions are taken as the test functions [2]. We define two inner products:

1 1
(ho®= [ ax [ 19 \/Tdi—‘r“z (29)

ho®= [ o [ re—Zs (30)

Forming by (29) the inner product of (10) for ¢ = 1 with the test functions

Po(A)To(r), Pm(A)r™Tam-a(r), m=0,1,...,M, m=12,.,ND-1  (31)
and by (30) the inner product of (10) for ¢ = 2 with the test functions

Pm(A) Zpy(2), m=0,1,....,.M, n;=1,2,...,. N®_1 (32)

we obtain two vector equations

~ do( N N N :
AWM d_:: = (-K BG4 K‘(,')B("d) - KOBOm) . ¢0) 4 kO pE) - j=1,2. (33)
Here AC®), B(G«) BG4 BOr) are {14 (M + 1)(NG) - 1), 1 + (M + 1)N®} matrices,

b() — {1+ (M 4 1)N()} are the vectors of inhomogeneous terms, and ¢(*)(r) — {1+ (M + 1)N()}
are the unknown vectors,

$)(7) = (o, #511s- - BEimars - s Bhns -2 By )T (34)
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() = (B6],- - Bokys- - Bhtns 2 oy )T (35)

The remaining 2 (M + 1) equations are derived from the boundary conditions (11).
Upon substituting (20) and (25) into (11), multiplying by Pm()A), m =0,1,...,M and
integrating A from —1 to 1, we obtain two sets of M+1 linear algebraic equations:

Q(l).¢(1) = Q(z).¢(2)’ (36)

H-D-SM.4(1) = §(2). 4(2), : (37)
where Q®), S0) are {(M + 1), (M +1)(1+ N®))} matrices, i = 1,2.
By expressing ¢$11;,)N(1) and ¢S:,)N(=)’ m = 0,1,..., M, using the system (36)-(37) and
substituting in the system (33), we arrive finally at the system of 1 + (M + 1)(N(1) 4 N(?) — 2)
linear ODEs:

d
A-di; = (B©® +B¥ + B().¢ +b. (38)

The constant matrices B(5), B(4) and B() correspond respectively to the convective,

~ diffusive, and reactive terms in the original equation (10), b is an {1 + (M + 1)(N?) + N(?) — 2)}

constant vector, and ¢ (7) is the vector of unknown functions

_ 1 1 2 2 1 1
¢ = (ao, f,'l’,...¢g'},(,,_1, ¢, g;v(,,_l,...qsg,{,,...¢;;'N(l)_1, S B )T (39)

and not simply a concatenation of vectors ¢ () and ¢ 3.

The matrices A, B(® and B(") are block-diagonal. They all have M+1 nonzero square
{NO4+N@)_2, N4 N(2)-2)} matrices on their main diagonals and their first 1+(N ()4 N(2)-2)
elements in the first row and the first column are nonzero.

The matrices B(¢) that result from transforming the convective terms also have block struc-
ture with the same block sizes. However, they are no longer block-diagonal and the amount of
nonzero block-diagonals depends on the velocity fields v(*), i = 1,2. The higher the degree of )
that is involved in the velocity field expressions, the greater will be the coupling between the radial
functions of different orders. And the increase of the order of this coupling leads to a corresponding
increase in the number of nonzero block diagonals in B(¢).

For the Hadamard - Rybczinsky field, for example, these matrices are block-tridiagonal, but
for the velocity field in [15], valid for higher Reynolds numbers, it would be block-pentadiagonal.

The discontinuous initial conditions (15) are not appropriate for computations. Instead,
we used the analytical solution for the pure diffusion case (no convection, no chemical reaction)
derived in [16]. The concentration distributions for very small time values were expanded over our
basis functions Ton—2(r) and Z,, n = 1,2,... to initialize the computations, and the coefficients
obtained were used as initial conditions for ag(7), S,lh)m , and ¢$;‘:?,,,, m=0,1,...,.M, n;=
1,2,...,N®O -1, ny;=12,... N1,

For time discretization of the system (38) we used the first-order backward Euler method.
Defining ¢™ as vector ¢ at the n-th time step of magnitude A7 and

B = B + B 4 B("), (40)

system (38) can be rewritten as
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(A - ATB)-A¢"™! = ATB-¢" + Atb, (41)

where

A¢n+1 - ¢n+1 _ ¢n . (42)

Every time step system of linear equations (41) was solved by regular Gauss elimination
(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the
left side of (41) has the same structure as the matrix B; as mentioned, it is block-tridiagonal
for the Hadamard-Rybczinsky velocity field. Our attempts to apply block-elimination methods (in
particular, the block Thomas algorithm [4]) failed, presumably because block LU factorization does
not involve pivoting, which is essential when diagonal dominance does not occur (which is the case
for high Peclet numbers).

We considered the matrix on the left side of (41) as a banded one with bandwidth 1 +
3(NM) 4+ N3 - 2).

As long as this matrix depends on the time step and its factorization is a time-consuming
process, only two values of the time step were used for each run. A smaller one was used for an
initial time period and an another one for the subsequent time range.

The numbers of terms in series (16), (20), and (25) depend on the steepness of the con-
centration gradients and were different for different values of Peclet and Damk&hler numbers. The
maximum numbers used were M = 87, N(1) = 25 N(2) = 97.

As is well known [1, 2], an increase in the number of terms in a spectral series (especially
in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting
system of linear equations. This was alleviated by using double precision in all computations and,
as mentioned above by application of the iterative refinement to the solution obtained with the
Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-
tracted by a particular instant in time. For the problem under consideration (i.e., when species are
extracted from the droplet) this can be conveniently characterized by the time-dependent average
dimensionless concentration of species remaining in the drop:

1 1
1) = g /o /_ r20(r, ) ddr (43)

This quantity changes in time as a result of mass transfer out of the droplet. The local and
surface average rates of this transfer are characterized by corresponding mass transfer coefficients,
the quantities which when multiplied by the driving force give the respective mass transfer rate.
The nondimensional mass transfer coefficient is usually referred to as the Sherwood number Sk,
which is analogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force on
which they are based and the domain to which they are related.

For the problem of single-drop extraction, the instantaneous driving force F(3) for mass
transfer is the difference between the concentration of the transferring species in the droplet and
that far away from it, taking into account the step change of the concentration at the interface due
to solubility,
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FU =7 _ e, (44)

where 71 is the dimensional average concentration of species in the droplet.
Often the Sherwood number is based on the maximum possible (in our case, initial) driving
force:

F{) = gy - Héy . (45)

Here we consider only the external Sherwood number, i.e., the nondimensional rate of
transfer of species from the external side of droplet surface into the external flow.

The local and average external Sherwood numbers defined on the basis of the maximum
driving force are respectively:

(1)
| Shioeo = —2H-D ge (46)
| or -
i and
| ,
‘ 1 g¢l)
Sho = —H-D/ Oc da. (47)
-1 Or r=1
Corresponding values based on the instantaneous driving force are:
- Shloc,O
Shioc = —=m (48)
Sho
Sh = EO (49)

The chemical reaction in the external region increases the rate of the extraction, and this
increase is characterized by the enhancement factor, which is the ratio of the corresponding mass
transfer rates [5]:

5o Sh(Dd?) # 0)

= 50
Sh(Da{?) = 0) (50)

COMPUTATIONAL RESULTS AND DISCUSSION
The results of the computations to be presented cover the following ranges of parameters:

025<D<4,

0 < Pel® < 500,

0 < Da{? < 1000,
H=p=1.

The characteristic time scale was chosen as

T,=Tig, (51)
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which is just the Fourier number based on the diffusion coefficient of the external fluid. The times
appearing on the plots are expressed in these units. The values of Peclet number Pe and Damkdhler
number Da presented on the plots correspond to Pe(?) and Dagzl) , Tespectively.

To illustrate qualitively the process of pure mass transfer (no reaction) from the droplet,
we present in Figures 1-3 the isocontours of constant species concentration at different times for
various levels of external convection (Pe(z) = 10, 200, 500, respectively). The well known and
intuitively expected increase of mass transfer with increasing convection is apparent.

The influence of internal circulation on the development of the mass transfer process is
illustrated in Figures 4-5 where we present the isoconcentration contours for the same external
Peclet number (Pe(?) = 500) and different ratios of internal and external diffusivities (D = 0.25
and D = 4.0).

For D = 0.25 the internal convection is much stronger, in the sense that the value of Pe(1)
is larger. As a consequence the concentration isocontours inside the droplet lie close to the internal
streamlines, a result already obtained numerically by Johns and Beckmann (7] for the special case
of mass transfer resistance solely inside the droplet. The coincidence of internal isocontours with
internal streamlines also constituted the basic assumption of Kronig and Brink’s model of mass
transfer in a circulating drop [6]. From a simple comparison of the isocontour levels in Figures 4
and 5 alone one infers that the mass transfer from a droplet for D=4 is much more intense than
for D=0.25. The reason that the internal Peclet number Pe(1) is greater for D = 0.25 is not that
the internal circulation is greater, for it is not (x = 1), but that the internal diffusivity is smaller.
Nonetheless, it is customary for brevity to describe an increase in Peclet number as an increase
in convection, rather than the more lengthy but more accurate increase of the ratio of convection
to diffusion. In this usage, one may phrase the conclusion drawn from Figures 1-5 as follows:
increased convection outside the droplet increases the rate of extraction, but increased convection
inside suppresses mass transfer.

The influence of the external reaction rate on the concentration distribution is shown in
Figures 2, 6 and 7. As could have easily been anticipated, an increase in Da(jl}) results in faster
extraction and an almost immediate disappearence of extracted species outside the droplet (almost

no species present for Da(I“}) = 100 in Figure 7).

Figures 8 and 9 show the effect of reaction rate on the local Sherwood number. The values of
Shioc,0 g0 to zero with time for all values of the angle variable ¥, although the surface distribution of
Sherwood number based on the instantaneous driving force approaches a nonvanishing asymptote.
An increase in the reaction rate thus results in a general increase of mass transfer and of values of
the Sherwood numbers, but the temporal variation of values of local Sherwood numbers at different
locations is less transparent, warranting further investigation.

Figure 10 reflects the behavior of average Sherwood number Sh in time for different values
of the external Peclet number Pe(?) for the no-reaction case. The oscillations of Sh were obtained
computationally by different investigators including Johns and Beckmann (7] and Oliver and Chung
[9], who solved the conjugate unsteady heat transfer problem, which is mathematically equivalent to
the mass transfer problem under consideration when there is no chemical reaction involved. These
oscillations are caused by the internal circulation, with the most detailed physical explanation being
given by Brignell in [8]. Consequently, the period of these oscillations is smaller and the amplitute
greater the higher the Peclet number is. The stronger convection also leads to a higher mass transfer
rate as it creates the thinner diffusion boundary layers on the both sides of the droplet surface.

Figure 11 illustrates the influence of the rate of external chemical reaction on the average
Sherwood number. The plots confirm the conclusions made above on the increase of the rate of
extraction with the increasing external convection and rate of external chemical reaction.
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In a more apparent way, this is reflected in Figure 12, where the decrease of the average
droplet concentration with time is shown. From this picture we can also deduce the very important
conclusion that an increase in the reaction rate beyond some specific value will not benefit the
extraction results (the diffences between the average droplet concentration for Da(Il}) values of 300
and 1000 are quite small).

Figure 13 shows the effect of reaction rates on the values and temporal evolution of the
enhancement factor E. The oscillations here are the consequences of internal circulation, the same
as for the corresponding average Sherwood number on Figure 10. The values of E corresponding
to the same reaction rate are higher for smaller Pe(?) (lower convection). A possible explanation
. could be that the corresponding values of Da(lz), which are just the ratios of Da(,"}) and Pe(?) are
smaller for higher Pe(2).

In closing, we want to emphasize that the purpose of this article has been to present the
numerical algorithm we have developed and to illustrate some of the kinds of results that can be
obtained for this concrete situation. Our subsequent articles will include additional results for other
classes of forced convective diffusion-reaction problems for single drops, as well as more detailed
analyses of these and other results.
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NOMENCLATURE

o -dimensional value of the uniform concentration in the origin of the droplet at ¢t = 0
€  -dimensional value of the concentration far from the drop

&%) .dimensional concentration in the i-th domain, i = 1, 2

¢()  _.dimensionless concentration in the i-th domain, i = 1,2

D®)  _molecular diffusivity of the solute in the fluid in the i-th domain, i = 1,2
D -molecular diffusivity ratio, D(1)/D(2)

Da(f) -first Damkohler number in the i-th domain , .k(') , 1=1,2
fO () Uso
Da(,'I) -second Damkohler number in the ¢-th domain, %—, 1=1,2
E -enhancement factor, eq.(50)
) _factor showing the viscosity ratio dependence of the
velocity scale in the i-th domain, 1 =1,2
H -distribution coefficient (Henry "law” constant)
k() _chemical reaction rate constant in the i-th domain, i = 1,2
M -highest order of the Legendre polynomials used in the expansion

in the angular direction
NG)  _number of terms in the expansion of radial functions in the i-th domain , i = 1,2

. (s
Pel)  _Peclet number in the i-th domain, 2 U”D:) R, 1i=1,2

r -dimensionless radial coordinate
R -droplet radius
t -dimensional time

Usi) -characteristic velocity scale in the ¢-th domain, i = 1,2
Us  -velocity of the flow at the infinity
v(®)  .velocity field in the i-th domain nondimensionalized

by the corresponding velocity scale U.("), 1=1,2

)/ -polar angle in spherical coordinate system

A = cos ¥

7 -molecular viscosities ratio, u(1)/u(?)

p)  .molecular viscosity of the fluid in the i-th domain, i = 1,2
T -dimensionless time

&), -convection time scale in the i-th domain, 1=1,2

__R__
. (1) Voo
'rg}, -diffusion time scale in the i-th domain, Djﬂ" 1=1,2

3

{8 .chemical reaction time scale in the i-th domain, ﬁ, 1=1,2
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Table 1: Coefficients in eq.(1) depending on the choice of 7, (3,7 = 1,2)
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(5) f(i) 2 . (1) (,_) (2)
T | ) | Pe® fO) | PO )
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